Difference in mortality rates in hospitalized COVID-19 patients identified by cytokine profile clustering using a machine learning approach: An outcome prediction alternative

Author:

Castro-Castro Ana Cristina,Figueroa-Protti Lucia,Molina-Mora Jose Arturo,Rojas-Salas María Paula,Villafuerte-Mena Danae,Suarez-Sánchez María José,Sanabría-Castro Alfredo,Boza-Calvo Carolina,Calvo-Flores Leonardo,Solano-Vargas Mariela,Madrigal-Sánchez Juan José,Sibaja-Campos Mario,Silesky-Jiménez Juan Ignacio,Chaverri-Fernández José Miguel,Soto-Rodríguez Andrés,Echeverri-McCandless Ann,Rojas-Chaves Sebastián,Landaverde-Recinos Denis,Weigert Andreas,Mora Javier

Abstract

COVID-19 is a disease caused by the novel Coronavirus SARS-CoV-2 causing an acute respiratory disease that can eventually lead to severe acute respiratory syndrome (SARS). An exacerbated inflammatory response is characteristic of SARS-CoV-2 infection, which leads to a cytokine release syndrome also known as cytokine storm associated with the severity of the disease. Considering the importance of this event in the immunopathology of COVID-19, this study analyses cytokine levels of hospitalized patients to identify cytokine profiles associated with severity and mortality. Using a machine learning approach, 3 clusters of COVID-19 hospitalized patients were created based on their cytokine profile. Significant differences in the mortality rate were found among the clusters, associated to different CXCL10/IL-38 ratio. The balance of a CXCL10 induced inflammation with an appropriate immune regulation mediated by the anti-inflammatory cytokine IL-38 appears to generate the adequate immune context to overrule SARS-CoV-2 infection without creating a harmful inflammatory reaction. This study supports the concept that analyzing a single cytokine is insufficient to determine the outcome of a complex disease such as COVID-19, and different strategies incorporating bioinformatic analyses considering a broader immune profile represent a more robust alternative to predict the outcome of hospitalized patients with SARS-CoV-2 infection.

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3