Lateral elbow tendinopathy and artificial intelligence: Binary and multilabel findings detection using machine learning algorithms

Author:

Droppelmann Guillermo,Tello Manuel,García Nicolás,Greene Cristóbal,Jorquera Carlos,Feijoo Felipe

Abstract

BackgroundUltrasound (US) is a valuable technique to detect degenerative findings and intrasubstance tears in lateral elbow tendinopathy (LET). Machine learning methods allow supporting this radiological diagnosis.AimTo assess multilabel classification models using machine learning models to detect degenerative findings and intrasubstance tears in US images with LET diagnosis.Materials and methodsA retrospective study was performed. US images and medical records from patients with LET diagnosis from January 1st, 2017, to December 30th, 2018, were selected. Datasets were built for training and testing models. For image analysis, features extraction, texture characteristics, intensity distribution, pixel-pixel co-occurrence patterns, and scales granularity were implemented. Six different supervised learning models were implemented for binary and multilabel classification. All models were trained to classify four tendon findings (hypoechogenicity, neovascularity, enthesopathy, and intrasubstance tear). Accuracy indicators and their confidence intervals (CI) were obtained for all models following a K-fold-repeated-cross-validation method. To measure multilabel prediction, multilabel accuracy, sensitivity, specificity, and receiver operating characteristic (ROC) with 95% CI were used.ResultsA total of 30,007 US images (4,324 exams, 2,917 patients) were included in the analysis. The RF model presented the highest mean values in the area under the curve (AUC), sensitivity, and also specificity by each degenerative finding in the binary classification. The AUC and sensitivity showed the best performance in intrasubstance tear with 0.991 [95% CI, 099, 0.99], and 0.775 [95% CI, 0.77, 0.77], respectively. Instead, specificity showed upper values in hypoechogenicity with 0.821 [95% CI, 0.82, −0.82]. In the multilabel classifier, RF also presented the highest performance. The accuracy was 0.772 [95% CI, 0.771, 0.773], a great macro of 0.948 [95% CI, 0.94, 0.94], and a micro of 0.962 [95% CI, 0.96, 0.96] AUC scores were detected. Diagnostic accuracy, sensitivity, and specificity with 95% CI were calculated.ConclusionMachine learning algorithms based on US images with LET presented high diagnosis accuracy. Mainly the random forest model shows the best performance in binary and multilabel classifiers, particularly for intrasubstance tears.

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3