Deep autoencoder-powered pattern identification of sleep disturbance using multi-site cross-sectional survey data

Author:

Lee Hyeonhoon,Choi Yujin,Son Byunwoo,Lim Jinwoong,Lee Seunghoon,Kang Jung Won,Kim Kun Hyung,Kim Eun Jung,Yang Changsop,Lee Jae-Dong

Abstract

Pattern identification (PI) is a diagnostic method used in Traditional East Asian medicine (TEAM) to select appropriate and personalized acupuncture points and herbal medicines for individual patients. Developing a reproducible PI model using clinical information is important as it would reflect the actual clinical setting and improve the effectiveness of TEAM treatment. In this paper, we suggest a novel deep learning-based PI model with feature extraction using a deep autoencoder and k-means clustering through a cross-sectional study of sleep disturbance patient data. The data were obtained from an anonymous electronic survey in the Republic of Korea Army (ROKA) members from August 16, 2021, to September 20, 2021. The survey instrument consisted of six sections: demographics, medical history, military duty, sleep-related assessments (Pittsburgh sleep quality index (PSQI), Berlin questionnaire, and sleeping environment), diet/nutrition-related assessments [dietary habit survey questionnaire and nutrition quotient (NQ)], and gastrointestinal-related assessments [gastrointestinal symptom rating scale (GSRS) and Bristol stool scale]. Principal component analysis (PCA) and a deep autoencoder were used to extract features, which were then clustered using the k-means clustering method. The Calinski-Harabasz index, silhouette coefficient, and within-cluster sum of squares were used for internal cluster validation and the final PSQI, Berlin questionnaire, GSRS, and NQ scores were used for external cluster validation. One-way analysis of variance followed by the Tukey test and chi-squared test were used for between-cluster comparisons. Among 4,869 survey responders, 2,579 patients with sleep disturbances were obtained after filtering using a PSQI score of >5. When comparing clustering performance using raw data and extracted features by PCA and the deep autoencoder, the best feature extraction method for clustering was the deep autoencoder (16 nodes for the first and third hidden layers, and two nodes for the second hidden layer). Our model could cluster three different PI types because the optimal number of clusters was determined to be three via the elbow method. After external cluster validation, three PI types were differentiated by changes in sleep quality, dietary habits, and concomitant gastrointestinal symptoms. This model may be applied to the development of artificial intelligence-based clinical decision support systems through electronic medical records and clinical trial protocols for evaluating the effectiveness of TEAM treatment.

Funder

Korea Institute of Oriental Medicine

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3