Author:
Lai U Hin,Wu Keng Sam,Hsu Ting-Yu,Kan Jessie Kai Ching
Abstract
IntroductionRecent developments in artificial intelligence large language models (LLMs), such as ChatGPT, have allowed for the understanding and generation of human-like text. Studies have found LLMs abilities to perform well in various examinations including law, business and medicine. This study aims to evaluate the performance of ChatGPT in the United Kingdom Medical Licensing Assessment (UKMLA).MethodsTwo publicly available UKMLA papers consisting of 200 single-best-answer (SBA) questions were screened. Nine SBAs were omitted as they contained images that were not suitable for input. Each question was assigned a specialty based on the UKMLA content map published by the General Medical Council. A total of 191 SBAs were inputted in ChatGPT-4 through three attempts over the course of 3 weeks (once per week).ResultsChatGPT scored 74.9% (143/191), 78.0% (149/191) and 75.6% (145/191) on three attempts, respectively. The average of all three attempts was 76.3% (437/573) with a 95% confidence interval of (74.46% and 78.08%). ChatGPT answered 129 SBAs correctly and 32 SBAs incorrectly on all three attempts. On three attempts, ChatGPT performed well in mental health (8/9 SBAs), cancer (11/14 SBAs) and cardiovascular (10/13 SBAs). On three attempts, ChatGPT did not perform well in clinical haematology (3/7 SBAs), endocrine and metabolic (2/5 SBAs) and gastrointestinal including liver (3/10 SBAs). Regarding to response consistency, ChatGPT provided correct answers consistently in 67.5% (129/191) of SBAs but provided incorrect answers consistently in 12.6% (24/191) and inconsistent response in 19.9% (38/191) of SBAs, respectively.Discussion and conclusionThis study suggests ChatGPT performs well in the UKMLA. There may be a potential correlation between specialty performance. LLMs ability to correctly answer SBAs suggests that it could be utilised as a supplementary learning tool in medical education with appropriate medical educator supervision.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献