Evaluating the performance of ChatGPT-4 on the United Kingdom Medical Licensing Assessment

Author:

Lai U Hin,Wu Keng Sam,Hsu Ting-Yu,Kan Jessie Kai Ching

Abstract

IntroductionRecent developments in artificial intelligence large language models (LLMs), such as ChatGPT, have allowed for the understanding and generation of human-like text. Studies have found LLMs abilities to perform well in various examinations including law, business and medicine. This study aims to evaluate the performance of ChatGPT in the United Kingdom Medical Licensing Assessment (UKMLA).MethodsTwo publicly available UKMLA papers consisting of 200 single-best-answer (SBA) questions were screened. Nine SBAs were omitted as they contained images that were not suitable for input. Each question was assigned a specialty based on the UKMLA content map published by the General Medical Council. A total of 191 SBAs were inputted in ChatGPT-4 through three attempts over the course of 3 weeks (once per week).ResultsChatGPT scored 74.9% (143/191), 78.0% (149/191) and 75.6% (145/191) on three attempts, respectively. The average of all three attempts was 76.3% (437/573) with a 95% confidence interval of (74.46% and 78.08%). ChatGPT answered 129 SBAs correctly and 32 SBAs incorrectly on all three attempts. On three attempts, ChatGPT performed well in mental health (8/9 SBAs), cancer (11/14 SBAs) and cardiovascular (10/13 SBAs). On three attempts, ChatGPT did not perform well in clinical haematology (3/7 SBAs), endocrine and metabolic (2/5 SBAs) and gastrointestinal including liver (3/10 SBAs). Regarding to response consistency, ChatGPT provided correct answers consistently in 67.5% (129/191) of SBAs but provided incorrect answers consistently in 12.6% (24/191) and inconsistent response in 19.9% (38/191) of SBAs, respectively.Discussion and conclusionThis study suggests ChatGPT performs well in the UKMLA. There may be a potential correlation between specialty performance. LLMs ability to correctly answer SBAs suggests that it could be utilised as a supplementary learning tool in medical education with appropriate medical educator supervision.

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3