Angiotensin System Autoantibodies Correlate With Routine Prognostic Indicators for COVID-19 Severity

Author:

Labandeira Carmen M.,Pedrosa Maria A.,Suarez-Quintanilla Juan A.,Cortes-Ayaso María,Labandeira-García José Luis,Rodríguez-Pérez Ana I.

Abstract

ObjectiveWe previously showed that angiotensin type-1 receptor and ACE2 autoantibodies (AT1-AA, ACE2-AA) are associated with COVID-19 severity. Our aim is to find correlations of these autoantibodies with routine biochemical parameters that allow an initial classification of patients.MethodsIn an initial cohort of 119 COVID-19 patients, serum AT1-AA and ACE2-AA concentrations were obtained within 24 h after diagnosis. In 50 patients with a complete set of routine biochemical parameters, clinical data and disease outcome information, a Random Forest algorithm was used to select prognostic indicators, and the Spearman coefficient was used to analyze correlations with AT1-AA, ACE2-AA.ResultsHemoglobin, lactate dehydrogenase and procalcitonin were selected. A decrease in one unit of hemoglobin, an increase in 0.25 units of procalcitonin, or an increase in 100 units of lactate dehydrogenase increased the severity of the disease by 35.27, 69.25, and 3.2%, respectively. Our binary logistic regression model had a predictive capability to differentiate between mild and moderate/severe disease of 84%, and between mild/moderate and severe disease of 76%. Furthermore, the selected parameters showed strong correlations with AT1-AA or ACE2-AA, particularly in men.ConclusionHemoglobin, lactate dehydrogenase and procalcitonin can be used for initial classification of COVID-19 patients in the admission day. Subsequent determination of more complex or late arrival biomarkers may provide further data on severity, mechanisms, and therapeutic options.

Funder

Axencia Galega de Innovación

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Instituto de Salud Carlos III

Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3