Preclinical Assessment of Paclitaxel- and Trastuzumab-Delivering Magnetic Nanoparticles Fe3O4 for Treatment and Imaging of HER2-Positive Breast Cancer

Author:

Guo Liting,Zhang Hongming,Liu Ping,Mi Tianai,Ha Da,Su Li,Huang Lei,Shi Yan,Zhang Jun

Abstract

Objective: The purpose of this study was to investigate the anticancer activity and the potential imaging use of the innovative combination of magnetic nanoparticles (MNPs)-Fe3O4, paclitaxel (PTX), and trastuzumab (Herceptin) in HER2-positive breast cancer.Methods: MNPs-Fe3O4 was synthesized and underwent water phase transfer and hydrophobic molecular loading, and its surface was then coupled with Herceptin mono-antibody. The morphological characteristics of MNPs-Fe3O4 were observed under transmission electron microscopy (TEM). Effects of PTX-Herceptin-MNPs-Fe3O4 on breast cancer cells were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,4-diphenyltetrazolium bromide assay and the flow cytometric apoptosis assay. To establish a xenograft model, we injected breast cancer SK-BR-3 cells into the left thighs of nude mice. We measured the effect of PTX-Herceptin-MNPs-Fe3O4 on tumor growth by measuring tumor size and calculating inhibition rate with immunohistochemistry analysis further performed, and analyzed MNPs-Fe3O4 accumulation in tumor lesions using in vivo magnetic resonance imaging and in vivo fluorescence imaging.Results: Most MNPs were in spherical shape of about 10 nm in diameter observed under TEM. PTX-Herceptin-MNPs-Fe3O4 showed greater cytotoxic effects, and induced a higher apoptosis rate of SK-BR-3 cells than all the other groups, with corresponding changes of apoptosis-related proteins. Meanwhile, the in vivo tumor xenograft model showed that tumor inhibition rate in the PTX-Herceptin-MNPs-Fe3O4 group was higher than in the PTX-Herceptin group. Furthermore, PTX-Herceptin-MNPs-Fe3O4 enhanced the T2 imaging contrast enhancement effect on tumors in tumor-bearing mice.Conclusion: The novel PTX-Herceptin-MNPs-Fe3O4 combination may represent a promising alternative breast cancer treatment strategy and may facilitate tumor imaging.

Publisher

Frontiers Media SA

Subject

General Medicine

Reference18 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3