Author:
Liu Yiguo,Zhang Yingying,Zhang Xiaoqin,Liu Xi,Zhou Yanfang,Jin Yun,Yu Chen
Abstract
ObjectiveEarly prediction of long-term outcomes in patients with sepsis-induced cardiorenal syndrome (CRS) remains a great challenge in clinical practice. Herein, we aimed to construct a nomogram and machine learning model for predicting the 1-year mortality risk in patients with sepsis-induced CRS.MethodsThis retrospective study enrolled 340 patients diagnosed with sepsis-induced CRS in Shanghai Tongji Hospital between January 2015 and May 2019, as a discovery cohort. Two predictive models, the nomogram and machine learning model, were used to predict 1-year mortality. The prognostic variables used to develop the nomogram were identified based on a forward stepwise binary logistic regression, and the predictive ability of the nomogram was evaluated by the areas under the receiver operating characteristic curve (AUC) and the calibration curve. Meanwhile, machine learning (ML) techniques, such as support vector machine, random forest (RF), and gradient boosted decision tree, were assessed mainly by accuracy and AUC. Feature ranking analysis was performed using the ML algorithm. Both nomogram and ML models were externally validated by an independent cohort of 103 patients diagnosed with sepsis-induced CRS between June 2019 and December 2020.ResultsAge, sequential sepsis-related organ failure score (SOFA), serum myoglobin (MYO), vasopressor use, and mechanical ventilation were identified as independent risk factors for 1-year mortality in the nomogram predictive model. In the discovery cohort, the nomogram yielded higher AUC for predicting mortality than did the SOFA score (0.855 [95% CI: 0.815–0.895] vs. 0.756 [95% CI: 0.705–0.808]). For ML, the model developed by RF showed the highest accuracy (0.765) and AUC (0.854). In feature ranking analysis, factors such as age, MYO, SOFA score, vasopressor use, and baseline serum creatinine were identified as important features affecting 1-year prognosis. Moreover, the nomogram and RF model both performed well in external validation, with an AUC of 0.877 and 0.863, respectively.ConclusionOur nomogram and ML models showed that age, SOFA score, serum MYO levels, and the use of vasopressors during hospitalization were the main factors influencing the risk of long-term mortality. Our models may serve as useful tools for assessing long-term prognosis in patients with sepsis-induced CRS.
Funder
National Natural Science Foundation of China