Fluorescence optical imaging feature selection with machine learning for differential diagnosis of selected rheumatic diseases

Author:

Rothe Felix,Berger Jörn,Welker Pia,Fiebelkorn Richard,Kupper Stefan,Kiesel Denise,Gedat Egbert,Ohrndorf Sarah

Abstract

Background and objectiveAccurate and fast diagnosis of rheumatic diseases affecting the hands is essential for further treatment decisions. Fluorescence optical imaging (FOI) visualizes inflammation-induced impaired microcirculation by increasing signal intensity, resulting in different image features. This analysis aimed to find specific image features in FOI that might be important for accurately diagnosing different rheumatic diseases.Patients and methodsFOI images of the hands of patients with different types of rheumatic diseases, such as rheumatoid arthritis (RA), osteoarthritis (OA), and connective tissue diseases (CTD), were assessed in a reading of 20 different image features in three phases of the contrast agent dynamics, yielding 60 different features for each patient. The readings were analyzed for mutual differential diagnosis of the three diseases (One-vs-One) and each disease in all data (One-vs-Rest). In the first step, statistical tools and machine-learning-based methods were applied to reveal the importance rankings of the features, that is, to find features that contribute most to the model-based classification. In the second step machine learning with a stepwise increasing number of features was applied, sequentially adding at each step the most crucial remaining feature to extract a minimized subset that yields the highest diagnostic accuracy.ResultsIn total, n = 605 FOI of both hands were analyzed (n = 235 with RA, n = 229 with OA, and n = 141 with CTD). All classification problems showed maximum accuracy with a reduced set of image features. For RA-vs.-OA, five features were needed for high accuracy. For RA-vs.-CTD ten, OA-vs.-CTD sixteen, RA-vs.-Rest five, OA-vs.-Rest eleven, and CTD-vs-Rest fifteen, features were needed, respectively. For all problems, the final importance ranking of the features with respect to the contrast agent dynamics was determined.ConclusionsWith the presented investigations, the set of features in FOI examinations relevant to the differential diagnosis of the selected rheumatic diseases could be remarkably reduced, providing helpful information for the physician.

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3