Automated Disease Detection in Gastroscopy Videos Using Convolutional Neural Networks

Author:

Zhang Chenxi,Xiong Zinan,Chen Shuijiao,Ding Alex,Cao Yu,Liu Benyuan,Liu Xiaowei

Abstract

A large percentage of the world's population is affected by gastric diseases ranging from erosion and ulcer to serious ailments such as gastric cancer, which is mainly caused by Helicobacter pylori(H.pylori) infection. While most erosions and ulcers are benign, severe cases of gastric diseases can still develop into cancer. Thus, early screening and treatment of all gastric diseases are of great importance. Upper gastroscopy is one such common screening procedure that visualizes the patient's upper digestive system by inserting a camera attached to a rubber tube down the patient's digestive tracts, but since the procedure requires manual inspection of the video feed, it is prone to human errors. To improve the sensitivity and specificity of gastroscopies, we applied deep learning methods to develop an automated gastric disease detection system that detects frames of the video feed showing signs of gastric diseases. To this end, we collected data from images in anonymous patient case reports and gastroscopy videos to train and evaluate a convolutional neural network (CNN), and we used sliding window to improve the stability of our model's video performance. Our CNN model achieved 84.92% sensitivity, 88.26% specificity, and 85.2% F1-score on the test set, as well as 97% true positive rate and 16.2% false positive rate on a separate video test set.

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated Scene Classification in Endoscopy Videos Using Convolutional Neural Networks;2024 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE);2024-06-19

2. Adaptify: A Refined Test-Time Adaptation Scheme for Frame Classification Consistency in Atrophic Gastritis Videos;2024 IEEE International Symposium on Biomedical Imaging (ISBI);2024-05-27

3. A Greedy Algorithm-Based Self-Training Pipeline for Expansion of Dental Caries Dataset;2023 IEEE International Conference on E-health Networking, Application & Services (Healthcom);2023-12-15

4. MLMSA: Multi-Level and Multi-Scale Attention for Lesion Detection in Endoscopy;2023 IEEE International Conference on E-health Networking, Application & Services (Healthcom);2023-12-15

5. A CNN-Based Disease Detection Framework for Wireless Capsule Endoscopy Videos;2023 IEEE International Conference on E-health Networking, Application & Services (Healthcom);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3