Collagen peptides affect collagen synthesis and the expression of collagen, elastin, and versican genes in cultured human dermal fibroblasts

Author:

Dierckx Stephan,Patrizi Milagros,Merino Marián,González Sonia,Mullor José L.,Nergiz-Unal Reyhan

Abstract

BackgroundCollagen is one of the major proteins of the skin and it is particularly important for its strength and resilience. Skin aging is a natural process that is characterized by the decrease and fragmentation of collagen in the dermis. Oral supplementation with collagen peptides has been clinically shown to have a positive effect on the skin condition. However, the mechanisms of aging-related changes synthesized by cells exposed to collagen are currently not well understood. Therefore, in this in vitro study, the mechanisms associated with collagen, elastin, and versican in human dermal fibroblasts were investigated after exposure to collagen peptides.MethodsThe effects of different concentrations of collagen peptides on cell viability and metabolism were analyzed. For gene expression analysis, human dermal fibroblasts were treated with collagen peptides. This was then followed by RNA extraction and DNA synthesis. Gene expressions of collagen type 1 (COL1A1), elastin (ELN), and versican (VCAN) were quantified by quantitative reverse transcription polymerase chain reaction (RT-qPCR). In addition, collagen levels were analyzed by confocal scanning laser microscopy using immunostaining.ResultsCollagen peptides tested in the study increased the expression of the relevant COL1A1, ELN, and VCAN genes in human dermal fibroblasts (p < 0.005). Furthermore, confocal microscopy showed increased collagen expression in the dermal fibroblast culture after treatment with the collagen peptides (p < 0.005).ConclusionThese data provide cell-based evidence for the beneficial effects of exposure to collagen peptides on the skin’s collagen content and on the molecules that provide firmness and elasticity. This may support the hypothesis that collagen peptides are important for maintaining extracellular matrix (ECM) structure and skin regeneration.

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3