Study of the Biological Developmental Characteristics of the Eye in Children After Laser Surgery for the Treatment of Retinopathy of Prematurity

Author:

Zeng Xianlu,Chen Miaohong,Zheng Lei,Tian Ruyin,Chen Yi,He Honghui,Zeng Jian,He Jicang,Zhang Guoming

Abstract

ObjectiveTo observe the differences in ocular biology between premature infants who had undergone retinal laser photocoagulation (LP) for retinopathy of prematurity (ROP) and full-term infants and to investigate the relationships between these differences and the development of the refractive state.MethodsThis retrospective, cross-sectional study included 25 children (50 eyes) who had undergone laser treatment for aggressive posterior retinopathy of prematurity (AP-ROP), ROP in zone I requiring treatment, or ROP in zone II requiring treatment in the posterior pole (laser group) and 29 full-term infants (58 eyes) who had not (control group). Basic information, spherical equivalent (SE), and best corrected visual acuity (BCVA) were collected from the two groups. Their mean ages were 7.32 ± 2.85 and 7.34 ± 2.57 years, respectively (t = −0.047, P = 0.96). Ocular biology data were measured using an IOL Master 700 instrument (Carl Zeiss Meditec AG) and the data were processed using MATLAB (R2016a, Mathworks Inc.). The data markers included central corneal thickness (CCT), anterior and posterior surface corneal curvature radius (CCR), anterior chamber depth (ACD), lens thickness (LT), lens anterior surface curvature radius, lens posterior surface curvature radius, and eye axis length (AL). Optometric data were collected simultaneously and all BCVA values were converted to the logarithm of the minimum angle of resolution (LogMAR) for analysis. The data were statistically analyzed using SPSS software (V.23.0). Independent sample t-tests were used for the assessment of ocular biology and refractive indices in both groups of children and Pearson correlation coefficients were used to evaluate the correlations between age, gestational age at birth and ocular biology structural parameters. P < 0.05 was considered statistically significant.ResultsComparisons of ocular biomarkers, refractive status, and BCVA between children in the laser and control groups showed relationships among ocular biomarkers, including the corneal-related parameters of CCT (0.54 ± 0.04 mm and 0.56 ± 0.03 mm, t = −2.116, P < 0.05), anterior surface CCR (7.53 ± 0.33 mm and 7.84 ± 0.30 mm, t = −5.063, P < 0.05), posterior surface CCR (6.75 ± 0.34 mm and 7.03 ± 0.24 mm, t = −4.864, P < 0.05); as well as those related to anterior chamber depth (ACD) were 3.24 ± 0.26 mm and 3.64 ± 0.26 mm, respectively (t = −8.065, P < 0.05), lens-related parameters (LT) were 3.80 ± 0.19 mm and 3.45 ± 0.16 mm, respectively (t = 10.514, P < 0.05); anterior lens surface curvature radius were 10.02 ± 0.93 mm and 10.52 ± 0.85 mm, respectively (t = −2.962, P < 0.05); posterior lens surface curvature radius were 5.55 ± 0.51 mm and 5.80 ± 0.36 mm, respectively (t = −2.917, P < 0.05), and ocular axis (AL) were 22.60 ± 1.42 mm and 23.45 ± 1.23 mm, respectively (t = −3.332, P < 0.05). Moreover, comparison of refractive status and BCVA between two groups of children showed an SE of −1.23 ± 3.38 D and −0.07 ± 2.00 D (t = −2.206, P < 0.05) and LogMAR (BCVA) of 0.12 ± 0.13 and 0.05 ± 0.11 (t = 3.070, P < 0.05). Analysis of the correlations between age and ocular biomarkers and refractive status of children in the laser and control groups showed correlations between age and ocular biomarkers in the two groups, in which age in the laser group was positively correlated with AL (r = 0.625, P < 0.05) but not with other biomarkers (P > 0.05). Age in the control group was negatively correlated with CCT, ACD, and AL (r = 0.303, 0.468, 0.703, P < 0.05), as well as with LT (r = −0.555, P < 0.05), with no correlation with other biomarkers (P > 0.05). Analysis of the correlation between age and refractive status of children in both groups showed that the age of children in both laser and control groups was negatively correlated with SE (r = −0.528, −0.655, P < 0.05) and LogMAR (BCVA) (r = −0.538, −0.542, P < 0.05). Analysis of the correlations between refractive status and ocular biomarkers in children in the laser and control groups showed that the refractive status in children in the laser group was negatively correlated with AL (r = −0.773, P < 0.05) but not with other biomarkers in this group (P > 0.05). The refractive status of children in the control group was negatively correlated with ACD and AL (r = −0.469, −0.734, P < 0.05), positively correlated with LT (r = 0.364, P < 0.05), and was not correlated with other biomarkers in this group (P > 0.05). Analysis of the correlations of gestational age at birth with ocular biomarkers and refractive status in children in the laser group showed a positive correlation between gestational age at birth and AL (r = 0.435, P < 0.05) but no other correlations with the other biomarkers (P > 0.05). Moreover, gestational age at birth was negatively correlated with SE (r = −0.334, P < 0.05) and LogMAR (BCVA) (r = −0.307, P < 0.05) in children in the laser group.ConclusionsCompared to full-term infants, the development of CCT, ACD, LT, and AL was relatively delayed after ROP laser surgery, resulting in thin central corneal thickness, steep corneas, shallow anterior chambers, thicker lenses, “rounder” lens morphology, increased refractive power, and short eye axes, leading to the development of myopia. The changes in refractive status were mainly influenced by increased lens thickness. The results of this study showed that the lower the gestational age at birth, the greater the effects on emmetropization in children after ROP, and the more likely the development of myopia.

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3