In vitro model for investigating aerosol dispersion in a simulated COVID-19 patient during high-flow nasal cannula treatment

Author:

McGrath James A.,O’Sullivan Andrew,Joyce Mary,Byrne Miriam A.,Li Jie,Fink James B.,MacLoughlin Ronan

Abstract

The use of high-flow nasal cannula in the treatment of COVID-19 infected patients has proven to be a valuable treatment option to improve oxygenation. Early in the pandemic, there were concerns for the degree of risk of disease transmission to health care workers utilizing these treatments that are considered aerosol generating procedures. This study developed an in vitro model to examine the release of simulated patient-derived bioaerosol with and without high-flow nasal cannula at gas flow rates of 30 and 50 L/min. Aerosol dispersion was evaluated at 30 and 90 cm distances. Reduction of transmission risk was assessed using a surgical facemask on the manikin. Results indicated that the use of a facemask facilitated a 94–95% reduction in exhaled aerosol concentration at 30 cm and 22–60% reduction for 90 cm distance across both gas flow rates. This bench study confirms that this in vitro model can be used as a tool to assess the risk of disease transmission during aerosol generating procedures in a simulated patient and to test factors to mitigate the risk.

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3