FAIL-T (AFP, AST, tumor sIze, ALT, and Tumor number): a model to predict intermediate-stage HCC patients who are not good candidates for TACE

Author:

Kaewdech Apichat,Sripongpun Pimsiri,Assawasuwannakit Suraphon,Wetwittayakhlang Panu,Jandee Sawangpong,Chamroonkul Naichaya,Piratvisuth Teerha

Abstract

BackgroundPatients with un-resectable hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE) are a diverse group with varying overall survival (OS). Despite the availability of several scoring systems for predicting OS, one of the unsolved problems is identifying patients who might not benefit from TACE. We aim to develop and validate a model for identifying HCC patients who would survive <6 months after their first TACE.MethodsPatients with un-resectable HCC, BCLC stage 0-B, who received TACE as their first and only treatment between 2007 and 2020 were included in this study. Before the first TACE, demographic data, laboratory data, and tumor characteristics were obtained. Eligible patients were randomly allocated in a 2:1 ratio to training and validation sets. The former was used for model development using stepwise multivariate logistic regression, and the model was validated in the latter set.ResultsA total of 317 patients were included in the study (210 for the training set and 107 for the validation set). The baseline characteristics of the two sets were comparable. The final model (FAIL-T) included AFP, AST, tumor sIze, ALT, and Tumor number. The FAIL-T model yielded AUROCs of 0.855 and 0.806 for predicting 6-month mortality after TACE in the training and validation sets, respectively, while the “six-and-twelve” score showed AUROCs of 0.751 (P < 0.001) in the training set and 0.729 (P = 0.099) in the validation sets for the same purpose.ConclusionThe final model is useful for predicting 6-month mortality in naive HCC patients undergoing TACE. HCC patients with high FAIL-T scores may not benefit from TACE, and other treatment options, if available, should be considered.

Funder

Faculty of Medicine, Prince of Songkla University

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3