GastroBot: a Chinese gastrointestinal disease chatbot based on the retrieval-augmented generation

Author:

Zhou Qingqing,Liu Can,Duan Yuchen,Sun Kaijie,Li Yu,Kan Hongxing,Gu Zongyun,Shu Jianhua,Hu Jili

Abstract

IntroductionLarge Language Models (LLMs) play a crucial role in clinical information processing, showcasing robust generalization across diverse language tasks. However, existing LLMs, despite their significance, lack optimization for clinical applications, presenting challenges in terms of illusions and interpretability. The Retrieval-Augmented Generation (RAG) model addresses these issues by providing sources for answer generation, thereby reducing errors. This study explores the application of RAG technology in clinical gastroenterology to enhance knowledge generation on gastrointestinal diseases.MethodsWe fine-tuned the embedding model using a corpus consisting of 25 guidelines on gastrointestinal diseases. The fine-tuned model exhibited an 18% improvement in hit rate compared to its base model, gte-base-zh. Moreover, it outperformed OpenAI’s Embedding model by 20%. Employing the RAG framework with the llama-index, we developed a Chinese gastroenterology chatbot named “GastroBot,” which significantly improves answer accuracy and contextual relevance, minimizing errors and the risk of disseminating misleading information.ResultsWhen evaluating GastroBot using the RAGAS framework, we observed a context recall rate of 95%. The faithfulness to the source, stands at 93.73%. The relevance of answers exhibits a strong correlation, reaching 92.28%. These findings highlight the effectiveness of GastroBot in providing accurate and contextually relevant information about gastrointestinal diseases. During manual assessment of GastroBot, in comparison with other models, our GastroBot model delivers a substantial amount of valuable knowledge while ensuring the completeness and consistency of the results.DiscussionResearch findings suggest that incorporating the RAG method into clinical gastroenterology can enhance the accuracy and reliability of large language models. Serving as a practical implementation of this method, GastroBot has demonstrated significant enhancements in contextual comprehension and response quality. Continued exploration and refinement of the model are poised to drive forward clinical information processing and decision support in the gastroenterology field.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3