Author:
Li Zhixi,Guo Xinxing,Zhang Jian,Liu Xing,Chang Robert,He Mingguang
Abstract
PurposeThe aim of this study was to prospectively quantify the level of agreement among the deep learning system, non-physician graders, and general ophthalmologists with different levels of clinical experience in detecting referable diabetic retinopathy, age-related macular degeneration, and glaucomatous optic neuropathy.MethodsDeep learning systems for diabetic retinopathy, age-related macular degeneration, and glaucomatous optic neuropathy classification, with accuracy proven through internal and external validation, were established using 210,473 fundus photographs. Five trained non-physician graders and 47 general ophthalmologists from China were chosen randomly and included in the analysis. A test set of 300 fundus photographs were randomly identified from an independent dataset of 42,388 gradable images. The grading outcomes of five retinal and five glaucoma specialists were used as the reference standard that was considered achieved when ≥50% of gradings were consistent among the included specialists. The area under receiver operator characteristic curve of different groups in relation to the reference standard was used to compare agreement for referable diabetic retinopathy, age-related macular degeneration, and glaucomatous optic neuropathy.ResultsThe test set included 45 images (15.0%) with referable diabetic retinopathy, 46 (15.3%) with age-related macular degeneration, 46 (15.3%) with glaucomatous optic neuropathy, and 163 (55.4%) without these diseases. The area under receiver operator characteristic curve for non-physician graders, ophthalmologists with 3–5 years of clinical practice, ophthalmologists with 5–10 years of clinical practice, ophthalmologists with >10 years of clinical practice, and the deep learning system for referable diabetic retinopathy were 0.984, 0.964, 0.965, 0.954, and 0.990 (p = 0.415), respectively. The results for referable age-related macular degeneration were 0.912, 0.933, 0.946, 0.958, and 0.945, respectively, (p = 0.145), and 0.675, 0.862, 0.894, 0.976, and 0.994 for referable glaucomatous optic neuropathy, respectively (p < 0.001).ConclusionThe findings of this study suggest that the accuracy of this deep learning system is comparable to that of trained non-physician graders and general ophthalmologists for referable diabetic retinopathy and age-related macular degeneration, but the deep learning system performance is better than that of trained non-physician graders for the detection of referable glaucomatous optic neuropathy.
Funder
National Natural Science Foundation of China
Science and Technology Planning Project of Guangdong Province
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Insight Retina: A Deep Learning Approach to Diagnose Diabetic Retinopathy;2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS);2024-04-18
2. Fine-Tuning Pre-Trained Models for Automated Analysis of Ophthalmic Imaging in Diagnosing Eye Diseases;2023 24th International Arab Conference on Information Technology (ACIT);2023-12-06