Development and Validation of a Simple-to-Use Nomogram for Predicting In-Hospital Mortality in Patients With Acute Heart Failure Undergoing Continuous Renal Replacement Therapy

Author:

Gao Luyao,Bian Yuan,Cao Shengchuan,Sang Wentao,Zhang Qun,Yuan Qiuhuan,Xu Feng,Chen Yuguo

Abstract

Background: Patients with acute heart failure (AHF) who require continuous renal replacement therapy (CRRT) have a high risk of in-hospital mortality. It is clinically important to screen high-risk patients using a model or scoring system. This study aimed to develop and validate a simple-to-use nomogram consisting of independent prognostic variables for the prediction of in-hospital mortality in patients with AHF undergoing CRRT.Methods: We collected clinical data for 121 patients with a diagnosis of AHF who underwent CRRT in an AHF unit between September 2011 and August 2020 and from 105 patients in the medical information mart for intensive care III (MIMIC-III) database. The nomogram model was created using a visual processing logistic regression model and verified using the standard method.Results: Patient age, days after admission, lactic acid level, blood glucose concentration, and diastolic blood pressure were the significant prognostic factors in the logistic regression analyses and were included in our model (named D-GLAD) as predictors. The resulting model containing the above-mentioned five factors had good discrimination ability in both the training group (C-index, 0.829) and the validation group (C-index, 0.740). The calibration and clinical effectiveness showed the nomogram to be accurate for the prediction of in-hospital mortality in both the training and validation cohort when compared with other models. The in-hospital mortality rates in the low-risk, moderate-risk, and high-risk groups were 14.46, 40.74, and 71.91%, respectively.Conclusion: The nomogram allowed the optimal prediction of in-hospital mortality in adults with AHF undergoing CRRT. Using this simple-to-use model, the in-hospital mortality risk can be determined for an individual patient and could be useful for the early identification of high-risk patients. An online version of the D-GLAD model can be accessed at https://ahfcrrt-d-glad.shinyapps.io/DynNomapp/.Clinical Trial Registration:www.ClinicalTrials.gov, identifier: NCT0751838.

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3