Construction of a novel clinical nomogram to predict cancer-specific survival in patients with primary malignant adrenal tumors: a large population-based retrospective study

Author:

Li Mingzhen,Duan Xiaoying,You Di,Liu Linlin

Abstract

BackgroundPrimary malignant adrenal tumors were rare and had a poor prognosis. This investigation aimed to create a useful clinical prediction nomogram to anticipate cancer-specific survival (CSS) of patients with a primary malignant adrenal tumor.MethodThis study included 1748 patients with malignant adrenal tumor diagnoses subjects from 2000 to 2019. These subjects were allocated randomly into training (70%) and validation (30%) cohorts. Patients with adrenal tumors underwent univariate and multivariate Cox regression analyses to identify the CSS-independent predictive biomarkers. Therefore, a nomogram was created depending on those predictors, and calibration curves, receiver operating characteristic (ROC) curves, and decision curve analysis (DCA) were used to assess the calibration capacity of the nomogram, discriminative power, and clinical efficiency, respectively. Afterward, a risk system for categorizing patients with adrenal tumors was established.ResultThe univariate and multivariate Cox analysis demonstrated the CSS-independent predictive factors, including age, tumor stage, size, histological type, and surgery. As a result, a nomogram was developed using these variables. For the 3-, 5-, and 10-year CSS of this nomogram, the values of the area under the curve (AUC) of the ROC curves were 0.829, 0.827, and 0.822, respectively. Furthermore, the AUC values of the nomogram were higher than those of the individual independent prognostic components of CSS, indicating that the nomogram had stronger prognostic prediction reliability. A novel risk stratification method was created to further improve patient stratification and give clinical professionals a better reference for clinical decision-making.ConclusionThrough the developed nomogram and risk stratification method, the CSS of patients with malignant adrenal tumors could be predicted more precisely, assisting physicians to differentiate patients better and creating personalized treatment strategies to optimize patient benefits.

Funder

Department of Science and Technology

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3