Comparison of ultrasound phacoemulsification and FemtoMatrix® PhotoEmulsification® cataract surgery

Author:

de Saint Jean Amélie,Dufournel Damien,Stodulka Pavel,Romano Fabrice,Bernard Aurélien

Abstract

ObjectiveTo introduce a novel technology currently under final development before regulatory approvals for the furtherment of cataract surgery, using the FemtoMatrix® laser system, and to demonstrate its safety and efficacy as compared to standard ultrasound phacoemulsification.MethodsThirty-three patients with bilateral cataracts were operated on with one eye undergoing PhotoEmulsification® treatment on the FemtoMatrix® device and the contralateral eye receiving the control procedure, i.e., standard ultrasound phacoemulsification treatment. The number of “zero-phaco” procedures (denoting that I/A alone was sufficient to aspirate the lens fragments and that no ultrasound energy was needed) was recorded and Effective Phaco Time (EPT) values were compared. The patient follow-up was 3 months.ResultsThirty-three eyes from a population with a mean cataract grade of 2.6 were treated on the FemtoMatrix®, of which 29 were “zero-phaco” (88%). All patients were operated on by a single surgeon who was a relative novice to the technology (63 patients treated prior to this study). Conversely, of the 33 fellow eyes who underwent standard ultrasound phacoemulsification, none were zero-phaco (0%) - all required varying degrees of ultrasound energy to make lens aspiration possible. The mean EPT was significantly lower in the PhotoEmulsification® laser group (0.2 ± 0.8 s) than in the phaco group (1.3 ± 1.2 s) (p < 0.0001). The safety profiles of the two procedures were comparable, with no device-related adverse events noted.ConclusionFemtoMatrix® is a promising femtosecond laser platform that, when compared to phacoemulsification, significantly decreases or eliminates EPT altogether. The system is used to perform PhotoEmulsification®, making zero-phaco cataract procedures feasible including in high-grade cataracts (>3). It enables personalized treatment by automatically measuring and adapting the laser energy required to obtain the most efficient cutting of the crystalline lens. This new technology appears to be safe and effective in cataract surgery.

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lens Fragmentation with Picosecond Laser Pulses After Artificial Cataract Induction with Microwaves;Photobiomodulation, Photomedicine, and Laser Surgery;2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3