Muscle-related parameters-based machine learning model for predicting postinduction hypotension in patients undergoing colorectal tumor resection surgery

Author:

Sheng Weixuan,Gao Danyang,Liu Pengfei,Song Mingxue,Liu Lei,Miao Huihui,Li Tianzuo

Abstract

ObjectivesThis study used machine learning algorithms to identify important variables and predict postinduction hypotension (PIH) in patients undergoing colorectal tumor resection surgery.MethodsData from 318 patients who underwent colorectal tumor resection under general anesthesia were analyzed. The training and test sets are divided based on the timeline. The Boruta algorithm was used to screen relevant basic characteristic variables and establish a model for the training set. Four models, regression tree, K-nearest neighbor, neural network, and random forest (RF), were built using repeated cross-validation and hyperparameter optimization. The best model was selected, and a sorting chart of the feature variables, a univariate partial dependency profile, and a breakdown profile were drawn. R2, mean absolute error (MAE), mean squared error (MSE), and root MSE (RMSE) were used to plot regression fitting curves for the training and test sets.ResultsThe basic feature variables associated with the Boruta screening were age, sex, body mass index, L3 skeletal muscle index, and HUAC. In the optimal RF model, R2 was 0.7708 and 0.7591, MAE was 0.0483 and 0.0408, MSE was 0.0038 and 0.0028, and RMSE was 0.0623 and 0.0534 for the training and test sets, respectively.ConclusionA high-performance algorithm was established and validated to demonstrate the degree of change in blood pressure after induction to control important characteristic variables and reduce PIH occurrence.

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3