Efficient differential privacy enabled federated learning model for detecting COVID-19 disease using chest X-ray images

Author:

Ahmed Rawia,Maddikunta Praveen Kumar Reddy,Gadekallu Thippa Reddy,Alshammari Naif Khalaf,Hendaoui Fatma Ali

Abstract

The rapid spread of COVID-19 pandemic across the world has not only disturbed the global economy but also raised the demand for accurate disease detection models. Although many studies have proposed effective solutions for the early detection and prediction of COVID-19 with Machine Learning (ML) and Deep learning (DL) based techniques, but these models remain vulnerable to data privacy and security breaches. To overcome the challenges of existing systems, we introduced Adaptive Differential Privacy-based Federated Learning (DPFL) model for predicting COVID-19 disease from chest X-ray images which introduces an innovative adaptive mechanism that dynamically adjusts privacy levels based on real-time data sensitivity analysis, improving the practical applicability of Federated Learning (FL) in diverse healthcare environments. We compared and analyzed the performance of this distributed learning model with a traditional centralized model. Moreover, we enhance the model by integrating a FL approach with an early stopping mechanism to achieve efficient COVID-19 prediction with minimal communication overhead. To ensure privacy without compromising model utility and accuracy, we evaluated the proposed model under various noise scales. Finally, we discussed strategies for increasing the model’s accuracy while maintaining robustness as well as privacy.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3