A hybrid neural network approach for classifying diabetic retinopathy subtypes

Author:

Xu Huanqing,Shao Xian,Fang Dandan,Huang Fangliang

Abstract

ObjectiveDiabetic retinopathy is a prevalent complication among diabetic patients that, if not predicted and treated promptly, can lead to blindness. This paper proposes a method for accurately and swiftly predicting the degree of diabetic retinopathy using a hybrid neural network model. Timely prediction of diabetic retinopathy is crucial in preventing blindness associated with this condition.MethodsThis study aims to enhance the prediction accuracy of diabetic retinopathy by utilizing the hybrid neural network model EfficientNet and Swin Transformer. The specific methodology includes: (1) combining local and global features to accurately capture lesion characteristics by leveraging the strengths of both Swin Transformer and EfficientNet models; (2) improving prediction accuracy through a comprehensive analysis of the model’s training details and applying data augmentation techniques such as Gaussian blur to enhance the hybrid model’s performance; (3) validating the effectiveness and utility of the proposed hybrid model for diabetic retinopathy detection through extensive experimental evaluations and comparisons with other deep learning models.ResultsThe hybrid model was trained and tested on the large-scale real-world diabetic retinopathy detection dataset APTOS 2019 Blindness Detection. The experimental results show that the hybrid model in this paper achieves the best results in all metrics, including sensitivity of 0.95, specificity of 0.98, accuracy of 0.97, and AUC of 0.97. The performance of the model is significantly improved compared to the mainstream methods currently employed. In addition, the model provides interpretable neural network details through class activation maps, which enables the visualization of diabetic retinopathy. This feature helps physicians to make more accurate diagnosis and treatment decisions. The model proposed in this paper shows higher accuracy in detecting and diagnosing diabetic retinopathy, which is crucial for the treatment and rehabilitation of diabetic patients.ConclusionThe hybrid neural network model based on EfficientNet and Swin Transformer significantly contributes to the prediction of diabetic retinopathy. By combining local and global features, the model achieves improved prediction accuracy. The validity and utility of the model are verified through experimental evaluations. This research provides robust support for the early diagnosis and treatment of diabetic patients.

Publisher

Frontiers Media SA

Reference23 articles.

1. Automated detection of diabetic retinopathy using deep learning;Lam;AMIA Jt Summits Transl Sci Proc,2018

2. Visualizing deep learning models for detecting referable diabetic retinopathy and glaucoma;Keel;JAMA Ophthalmol,2019

3. Deep residual learning for image recognition;He

4. Validation of a deep convolutional neural network-based algorithm for detecting diabetic retinopathy-artificial intelligence versus clinician for screening;Shah;Indian J Ophthalmol,2020

5. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning;Abràmoff;Invest Ophthalmol Vis Sci,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3