Prediction model for postoperative atrial fibrillation in non-cardiac surgery using machine learning

Author:

Oh Ah Ran,Park Jungchan,Shin Seo Jeong,Choi Byungjin,Lee Jong-Hwan,Yang Kwangmo,Kim Ha Yeon,Sung Ji Dong,Lee Seung-Hwa

Abstract

Some patients with postoperative atrial fibrillation (POAF) after non-cardiac surgery need treatment, and a predictive model for these patients is clinically useful. Here, we developed a predictive model for POAF in non-cardiac surgery based on machine learning techniques. In a total of 201,864 patients who underwent non-cardiac surgery between January 2011 and June 2019 at our institution, 5,725 (2.8%) were treated for POAF. We used machine learning with an extreme gradient boosting algorithm to evaluate the effects of variables on POAF. Using the top five variables from this algorithm, we generated a predictive model for POAF and conducted an external validation. The top five variables selected for the POAF model were age, lung operation, operation duration, history of coronary artery disease, and hypertension. The optimal threshold of probability in this model was estimated to be 0.1, and the area under the receiver operating characteristic (AUROC) curve was 0.80 with a 95% confidence interval of 0.78–0.81. Accuracy of the model using the estimated threshold was 0.95, with sensitivity and specificity values of 0.28 and 0.97, respectively. In an external validation, the AUROC was 0.80 (0.78–0.81). The working predictive model for POAF requiring treatment in non-cardiac surgery based on machine learning techniques is provided online (https://sjshin.shinyapps.io/afib_predictor_0913/). The model needs further verification among other populations.

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3