Exploring the complexity of commonly held attitudes and beliefs of low back pain—a network analysis

Author:

Liew Bernard X. W.,Darlow Ben

Abstract

ObjectivesThe current study used a network analysis approach to explore the complexity of attitudes and beliefs held in people with and without low back pain (LBP). The study aimed to (1) quantify the adjusted associations between individual items of the Back Pain Attitudes Questionnaire (Back-PAQ), and (2) identify the items with the strongest connectivity within the network.MethodsThis is a secondary data analysis of a previously published survey using the Back-PAQ (n = 602). A nonparametric Spearman’s rank correlation matrix was used as input to the network analysis. We estimated an unregularised graphical Gaussian model (GGM). Edges were added or removed in a stepwise manner until the extended Bayesian information criterion (EBIC) did not improve. We assessed three measures of centrality measures of betweenness, closeness, and strength.ResultsThe two pairwise associations with the greatest magnitude of correlation were between Q30–Q31 [0.54 (95% CI 0.44 to 0.60)] and Q15–Q16 [0.52 (95% CI 0.43 to 0.61)]. These two relationships related to the association between items exploring the influence of attentional focus and expectations (Q30–Q31), and feelings and stress (Q15–Q16). The three items with the greatest average centrality values, were Q22, Q25, and Q10. These items reflect beliefs about damaging the back, exercise, and activity avoidance, respectively.ConclusionBeliefs about back damage, exercise, and activity avoidance are factors most connected to all other beliefs within the network. These three factors may represent candidate targets that clinicians can focus their counseling efforts on to manage unhelpful attitudes and beliefs in people experiencing LBP.

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3