Building Efficient CNN Architectures for Histopathology Images Analysis: A Case-Study in Tumor-Infiltrating Lymphocytes Classification

Author:

Meirelles André L. S.,Kurc Tahsin,Kong Jun,Ferreira Renato,Saltz Joel H.,Teodoro George

Abstract

BackgroundDeep learning methods have demonstrated remarkable performance in pathology image analysis, but they are computationally very demanding. The aim of our study is to reduce their computational cost to enable their use with large tissue image datasets.MethodsWe propose a method called Network Auto-Reduction (NAR) that simplifies a Convolutional Neural Network (CNN) by reducing the network to minimize the computational cost of doing a prediction. NAR performs a compound scaling in which the width, depth, and resolution dimensions of the network are reduced together to maintain a balance among them in the resulting simplified network. We compare our method with a state-of-the-art solution called ResRep. The evaluation is carried out with popular CNN architectures and a real-world application that identifies distributions of tumor-infiltrating lymphocytes in tissue images.ResultsThe experimental results show that both ResRep and NAR are able to generate simplified, more efficient versions of ResNet50 V2. The simplified versions by ResRep and NAR require 1.32× and 3.26× fewer floating-point operations (FLOPs), respectively, than the original network without a loss in classification power as measured by the Area under the Curve (AUC) metric. When applied to a deeper and more computationally expensive network, Inception V4, NAR is able to generate a version that requires 4× lower than the original version with the same AUC performance.ConclusionsNAR is able to achieve substantial reductions in the execution cost of two popular CNN architectures, while resulting in small or no loss in model accuracy. Such cost savings can significantly improve the use of deep learning methods in digital pathology. They can enable studies with larger tissue image datasets and facilitate the use of less expensive and more accessible graphics processing units (GPUs), thus reducing the computing costs of a study.

Funder

National Cancer Institute

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

U.S. National Library of Medicine

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Pró-Reitoria de Pesquisa, Universidade Federal de Minas Gerais

National Institutes of Health

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3