Interplay of cytokines in the pathophysiology of atopic dermatitis: insights from Murin models and human

Author:

Yamamura Yuto,Nakashima Chisa,Otsuka Atsushi

Abstract

The pathogenesis of atopic dermatitis (AD) is understood to be crucially influenced by three main factors: dysregulation of the immune response, barrier dysfunction, and pruritus. In the lesional skin of AD, various innate immune cells, including Th2 cells, type 2 innate lymphoid cells (ILC2s), and basophils, produce Th2 cytokines [interleukin (IL)-4, IL-5, IL-13, IL-31]. Alarmins such as TSLP, IL-25, and IL-33 are also produced by epidermal keratinocytes, amplifying type 2 inflammation. In the chronic phase, not only Th2 cells but also Th22 and Th17 cells increase in number, leading to suppression of filaggrin expression by IL-4, IL-13, and IL-22, which further deteriorates the epidermal barrier function. Dupilumab, which targets IL-4 and IL-13, has shown efficacy in treating moderate to severe AD. Nemolizumab, targeting IL-31RA, effectively reduces pruritus in AD patients. In addition, clinical trials with fezakinumab, targeting IL-22, have demonstrated promising results, particularly in severe AD cases. Conversely, in murine models of AD, several cytokines, initially regarded as promising therapeutic targets, have not demonstrated sufficient efficacy in clinical trials. IL-33 has been identified as a potent activator of immune cells, exacerbating AD in murine models and correlating with disease severity in human patients. However, treatments targeting IL-33 have not shown sufficient efficacy in clinical trials. Similarly, thymic stromal lymphopoietin (TSLP), integral to type 2 immune responses, induces dermatitis in animal models and is elevated in human AD, yet clinical treatments like tezepelumab exhibit limited efficacy. Therapies targeting IL-1α, IL-5, and IL-17 also failed to achieve sufficient efficacy in clinical trials. It has become clear that for treating AD, IL-4, IL-13, and IL-31 are relevant therapeutic targets during the acute phase, while IL-22 emerges as a target in more severe cases. This delineation underscores the necessity of considering distinct pathophysiological aspects and therapeutic targets in AD between mouse models and humans. Consequently, this review delineates the distinct roles of cytokines in the pathogenesis of AD, juxtaposing their significance in human AD from clinical trials against insights gleaned from AD mouse models. This approach will improve our understanding of interspecies variation and facilitate a deeper insight into the pathogenesis of AD in humans.

Publisher

Frontiers Media SA

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3