Artificial intelligence model for segmentation and severity scoring of osteophytes in hand osteoarthritis on ultrasound images

Author:

Overgaard Benjamin Schultz,Christensen Anders Bossel Holst,Terslev Lene,Savarimuthu Thiusius Rajeeth,Just Søren Andreas

Abstract

ObjectiveTo develop an artificial intelligence (AI) model able to perform both segmentation of hand joint ultrasound images for osteophytes, bone, and synovium and perform osteophyte severity scoring following the EULAR-OMERACT grading system (EOGS) for hand osteoarthritis (OA).MethodsOne hundred sixty patients with pain or reduced function of the hands were included. Ultrasound images of the metacarpophalangeal (MCP), proximal interphalangeal (PIP), distal interphalangeal (DIP), and first carpometacarpal (CMC1) joints were then manually segmented for bone, synovium and osteophytes and scored from 0 to 3 according to the EOGS for OA. Data was divided into a training, validation, and test set. The AI model was trained on the training data to perform bone, synovium, and osteophyte identification on the images. Based on the manually performed image segmentation, an AI was trained to classify the severity of osteophytes according to EOGS from 0 to 3. Percent Exact Agreement (PEA) and Percent Close Agreement (PCA) were assessed on individual joints and overall. PCA allows a difference of one EOGS grade between doctor assessment and AI.ResultsA total of 4615 ultrasound images were used for AI development and testing. The developed AI model scored on the test set for the MCP joints a PEA of 76% and PCA of 97%; for PIP, a PEA of 70% and PCA of 97%; for DIP, a PEA of 59% and PCA of 94%, and CMC a PEA of 50% and PCA of 82%. Combining all joints, we found a PEA between AI and doctor assessments of 68% and a PCA of 95%.ConclusionThe developed AI model can perform joint ultrasound image segmentation and severity scoring of osteophytes, according to the EOGS. As proof of concept, this first version of the AI model is successful, as the agreement performance is slightly higher than previously found agreements between experts when assessing osteophytes on hand OA ultrasound images. The segmentation of the image makes the AI explainable to the doctor, who can immediately see why the AI applies a given score. Future validation in hand OA cohorts is necessary though.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3