Machine learning algorithms predict canine structural epilepsy with high accuracy

Author:

Flegel Thomas,Neumann Anja,Holst Anna-Lena,Kretzschmann Olivia,Loderstedt Shenja,Tästensen Carina,Gutmann Sarah,Dietzel Josephine,Becker Lisa Franziska,Kalliwoda Theresa,Weiß Vivian,Kowarik Madlene,Böttcher Irene Christine,Martin Christian

Abstract

IntroductionClinical reasoning in veterinary medicine is often based on clinicians’ personal experience in combination with information derived from publications describing cohorts of patients. Studies on the use of scientific methods for patient individual decision making are largely lacking. This applies to the prediction of the individual underlying pathology in seizuring dogs as well. The aim of this study was to apply machine learning to the prediction of the risk of structural epilepsy in dogs with seizures.Materials and methodsDogs with a history of seizures were retrospectively as well as prospectively included. Data about clinical history, neurological examination, diagnostic tests performed as well as the final diagnosis were collected. For data analysis, the Bayesian Network and Random Forest algorithms were used. A total of 33 features for Random Forest and 17 for Bayesian Network were available for analysis. The following four feature selection methods were applied to select features for further analysis: Permutation Importance, Forward Selection, Random Selection and Expert Opinion. The two algorithms Bayesian Network and Random Forest were trained to predict structural epilepsy using the selected features.ResultsA total of 328 dogs of 119 different breeds were identified retrospectively between January 2017 and June 2021, of which 33.2% were diagnosed with structural epilepsy. An overall of 89,848 models were trained. The Bayesian Network in combination with the Random feature selection performed best. It was able to predict structural epilepsy with an accuracy of 0.969 (sensitivity: 0.857, specificity: 1.000) among all dogs with seizures using the following features: age at first seizure, cluster seizures, seizure in last 24 h, seizure in last 6 month, and seizure in last year.ConclusionMachine learning algorithms such as Bayesian Networks and Random Forests identify dogs with structural epilepsy with a high sensitivity and specificity. This information could provide some guidance to clinicians and pet owners in their clinical decision-making process.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3