Transcriptome profiling of A549 non-small cell lung cancer cells in response to Trichinella spiralis muscle larvae excretory/secretory products

Author:

Wang Haoxuan,Zhu Yingying,Li Meichen,Pan Jingdan,Li Dan,Guo Wen-Ping,Xie Guangcheng,Du Luanying

Abstract

Trichinella spiralis (T. spiralis) muscle-larva excretory/secretory products (ML-ESPs) is a complex array of proteins with antitumor activity. We previously demonstrated that ML-ESPs inhibit the proliferation of A549 non-small cell lung cancer (NSCLC) cell line. However, the mechanism of ML-ESPs against A549 cells, especially on the transcriptional level, remains unknow. In this study, we systematically investigated a global profile bioinformatics analysis of transcriptional response of A549 cells treated with ML-ESPs. And then, we further explored the transcriptional regulation of genes related to glucose metabolism in A549 cells by ML-ESPs. The results showed that ML-ESPs altered the expression of 2,860 genes (1,634 upregulated and 1,226 downregulated). GO and KEGG analysis demonstrated that differentially expressed genes (DEGs) were mainly associated with pathway in cancer and metabolic process. The downregulated genes interaction network of metabolic process is mainly associated with glucose metabolism. Furthermore, the expression of phosphofructokinase muscle (PFKM), phosphofructokinase liver (PFKL), enolase 2 (ENO2), lactate dehydrogenase B (LDHB), 6-phosphogluconolactonase (6PGL), ribulose-phosphate-3-epimerase (PRE), transketolase (TKT), transaldolase 1 (TALDO1), which genes mainly regulate glycolysis and pentose phosphate pathway (PPP), were suppressed by ML-ESPs. Interestingly, tricarboxylic acid cycle (TCA)-related genes, such as pyruvate dehydrogenase phosphatase 1 (PDP1), PDP2, aconitate hydratase 1 (ACO1) and oxoglutarate dehydrogenase (OGDH) were upregulated by ML-ESPs. In summary, the transcriptome profiling of A549 cells were significantly altered by ML-ESPs. And we also provide new insight into how ML-ESPs induced a transcriptional reprogramming of glucose metabolism-related genes in A549 cells.

Publisher

Frontiers Media SA

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3