Kinetics of Gene Expression Changes in Equine Fetal Interzone and Anlagen Cells Over 14 Days of Induced Chondrogenesis

Author:

Mok Chan Hee,MacLeod James N.

Abstract

Within developing synovial joints, interzone and anlagen cells progress through divergent chondrogenic pathways to generate stable articular cartilage and transient hypertrophic anlagen cartilage, respectively. Understanding the comparative cell biology between interzone and anlagen cells may provide novel insights into emergent cell-based therapies to support articular cartilage regeneration. The aim of this study was to assess the kinetics of gene expression profiles in these skeletal cell lines after inducing chondrogenesis in culture. Interzone and anlagen cells from seven equine fetuses were isolated and grown in a TGF-β1 chondrogenic inductive medium. Total RNA was isolated at ten time points (0, 1.5, 3, 6, 12, 24, 48, 96, 168, and 336 h), and gene expression for 93 targeted gene loci was measured in a microfluidic RT-qPCR system. Differential transcriptional responses were observed as early as 1.5 h after the initiation of chondrogenesis. Genes with functional annotations that include transcription regulation responded to the chondrogenic stimulation earlier (1.5–96 h) than genes involved in signal transduction (1.5–336 h) and the extracellular matrix biology (3–336 h). Between interzone and anlagen cell cultures, expression levels of 73 out of the 93 targeted genes were not initially different at 0 h, but 47 out of the 73 genes became differentially expressed under the chondrogenic stimulation. While interzone and anlagen cells are both chondrogenic, they display clear differences in response to the same TGF-β1 chondrogenic stimulation. This study provides new molecular insight into a timed sequence of the divergent developmental fates of interzone and anlagen cells in culture over 14 days.

Funder

Morris Animal Foundation

U.S. Department of Agriculture

Lourie Foundation

Publisher

Frontiers Media SA

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3