Cysteamine-supplemented diet for cashmere goats: A potential strategy to inhibit rumen biohydrogenation and enhance plasma antioxidant capacity

Author:

Wu Tiecheng,Liang Jianyong,Wang Tao,Zhao Ruoyang,Ma Yuejun,Gao Yulin,Zhao Shengguo,Chen Guoshun,Liu Bin

Abstract

Cysteamine (CS), as a feed supplement, can increase the level of growth hormone (GH) in the blood, promote animal growth. However, little attention has been paid to the effects of CS on the rumen microbiome and metabolic profile in cashmere goats. This study aimed to assess the effects of rumen microbiota, metabolites, and plasma antioxidative capacity induced by CS supplementation in cashmere goats. We selected 30 Inner Mongolia white cashmere goat ewes (aged 18 months), and randomly separate the goats into three groups (n = 10 per group) to experiment for 40 days. Oral 0 (control group, CON), 60 (low CS, LCS), or 120 mg/kg BW−1 (high CS, HCS) coated CS hydrochloride every day. Using 16S and internal transcribed spacer (ITS) rRNA gene amplicon sequencing, we identified 12 bacterial and 3 fungal genera with significant changes among the groups, respectively. We found a significant increase in rumen NH3-N and total volatile fatty acid (TVFA) concentrations in the LCS and HCS groups compared with the CON. With untargeted LC–MS/MS metabolomics, we screened 59 rumen differential metabolites. Among the screened metabolites, many unsaturated and saturated fatty acids increased and decreased with CS treatment, respectively. CS supplementation increased the levels of plasma total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), GH, and insulin-like growth factor-1(IGF-1). Spearman correlation analysis revealed that the abundance of U29-B03, Lactococcus, and Brochothrix were positively associated with the levels of δ2-THA, TVFA and antioxidant capacity. In conclusion, CS significantly affected rumen microbiota and fermentation parameters, and ultimately inhibited the biohydrogenation of rumen metabolites, enhanced plasma antioxidant capacity, and regulated some hormones of the GH–IGF-1 axis. This study provides an overall view into the CS application as a strategy to improve health production in cashmere goats.

Publisher

Frontiers Media SA

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3