High genetic merit dairy heifers grazing low quality forage had similar weight gain and urinary nitrogen excretion to those of low genetic merit heifers

Author:

Cheng L.,Goulven C. L.,Cullen B. R.,Clark C.,Gregorini P.,Sun X. Z.,Talukder S.

Abstract

Climate variability and increasing drought events have become significant concerns in recent years. However, there is limited published research on body weight (BW) change of dairy heifers with different genetic merit when grazing on drought impacted pastures in southern Australia. Achieving target body weight (BW) is vital for dairy heifers, especially during critical stages like mating and calving. This study aimed to assess dry matter (DM) intake, BW change, urinary nitrogen excretion, and grazing behaviours of high vs. low genetic dairy heifers grazing pasture during a 43-day experimental period in a drought season. Forty-eight Holstein Friesian heifers grazed on ryegrass-dominant pasture and were divided into two groups based on their high and low Balanced Performance Index (HBPI and LBPI, respectively). Each group was further stratified into six plots, with similar BW, resulting in four heifers per replication group. Data from the five measurement days were averaged for individual cows to analyse the dry matter intake, nitrogen intake and nitrogen excretion. The statistical model included the treatment effect of BPI (H and L) and means were analysed using ANOVA. The pasture quality was poor, with metabolizable energy 9.3 MJ/Kg DM and crude protein 5.9% on a DM basis. Nitrogen intake and urinary nitrogen excretion were significantly higher (p  <  0.05) in HBPI compared to the LBPI. However, despite these differences, the study did not find any advantages of having HBPI heifer grazing on low quality forage in terms of BW performance.

Funder

University of Melbourne

Publisher

Frontiers Media SA

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3