Mint Oil, ɤ-Tocopherol, and Whole Yeast Cell in Sow Diets Enhance Offspring Performance in the Postweaning Period

Author:

Hernandez Lily P.,Dunn James L.,Wenninghoff Joel,Hesse Amanda,Levesque Crystal L.

Abstract

Times of high metabolic activity in gestation and lactation, as well as periods of stress at weaning, can lead to greater incidences of oxidative stress in the dam and offspring during the suckling and postweaning period. Oxidative stress is an imbalance between prooxidant molecules and the antioxidant defense system that can negatively impact growth and/or reproductive performance. The objective of this research was to evaluate the effectiveness of whole yeast cell, peppermint oil, and ɤ-tocopherol in gestation and lactation on maternal oxidative status and offspring growth from birth to market. In study 1, 45 sows and gilts were assigned to one of four diets [control diet (CON), control + whole yeast cell (YC), control + mint oil top dress (MO), and control + yeast cell and mint oil top dress (YCMO)] provided from d110 of gestation through to weaning. A total of 481 weaned offspring were randomly allotted to pens balanced by weight and litter within maternal treatment and received the same dietary treatment as the sow for 35 days postwean in a four-phase feeding regimen. In study 2, 53 sows and gilts were allotted to four diet regimens similar to study 1 [CON, YC, MO, and control + ɤ-tocopherol (GT)] from d5 postbreeding to weaning. At weaning, 605 piglets were randomly allotted to pens, balanced by weight and litter within maternal treatment and fed a common diet for 126 days postwean in a nine-phase feeding regimen. Maternal dietary treatment did not impact sow body weight, piglet birth weight, and litter size in either study. In study 1, piglets from YC sows were heavier (p < 0.05) at weaning than CON animals. In the postwean period, overall daily gain was greater (p < 0.05) for CON-fed pigs than YCMO pigs, with overall feed intake greater (p < 0.05) for YCMO- than MO-fed pigs, resulting in lower (p < 0.05) Gain to Feed (G:F) in YCMO-fed pigs. In study 1, glutathione content in milk tended to be lower (p < 0.10) in MO than in YCMO sows. In study 2, piglets from GT-fed sows tended to be heavier (p < 0.10) at weaning than YC piglets. Lightweight pigs from CON sows tended to be lighter (p < 0.10) than pigs from all other treatment groups at weaning and day (d) 29 postwean. Lightweight MO and GT pigs were heavier at d42 (p < 0.05) than CON and YC pigs. At d70 postwean, GT pigs tended to be heavier than CON pigs. Lightweight MO pigs had greater gain (p < 0.05) during the finishing period than all other treatment groups. With respect to sow oxidative status in study 2, glutathione content in colostrum and d4 and 14 milk samples did not differ by maternal treatment. Superoxide dismutase activity in sow sera, colostrum, and milk did not differ between diets in either study. Whole yeast cell and ɤ-tocopherol supplementation in sow lactation diets resulted in heavier offspring. However, pre- and postnatal exposure to mint oil benefited lightweight pigs up to market weight.

Publisher

Frontiers Media SA

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3