Introduction of a bone-centered three-dimensional coordinate system enables computed tomographic canine femoral angle measurements independent of positioning

Author:

Brühschwein Andreas,Schmitz Bronson,Zöllner Martin,Reese Sven,Meyer-Lindenberg Andrea

Abstract

IntroductionMeasurement of torsional deformities and varus alignment in the canine femur is clinically and surgically important but difficult. Computed tomography (CT) generates true three-dimensional (3D) information and is used to overcome the limitations of radiography. The 3D CT images can be rotated freely, but the final view for angle measurements remains a subjective variable decision, especially in severe and complex angular and torsional deformities. The aim of this study was the development of a technique to measure femoral angles in a truly three-dimensional way, independent of femoral positioning.MethodsTo be able to set reference points in any image and at arbitrary positions of the CT series, the 3D coordinates of the reference points were used for mathematical calculation of the angle measurements using the 3D medical imaging Software VoXim®. Anatomical reference points were described in multiplanar reconstructions and volume rendering CT. A 3D bone-centered coordinate system was introduced and aligned with the anatomical planes of the femur. For torsion angle measurements, the transverse projection plane was mathematically defined by orthogonality to the longitudinal diaphyseal axis. For varus angle measurements, the dorsal plane was defined by a femoral retrocondylar axis. Independence positioning was tested by comparison of angle measurement results in repeated scans of 13 femur bones in different parallel and two double oblique (15/45°) positions in the gantry. Femoralvarus (or valgus), neck version (torsion), and inclination angles were measured, each in two variations.ResultsResulting mean differences ranged between –0.9° and 1.3° for all six determined types of angles and in a difference of <1° for 17 out of 18 comparisons by subtraction of the mean angles between different positions, with one outlier of 1.3°. Intra- and inter-observer agreements determined by repeated measurements resulted in coefficients of variation for repeated measurements between 0.2 and 13.5%.DiscussionThe introduction of a bone-centered 3D coordinate system and mathematical definition of projection planes enabled 3D CT measurements of canine femoral varus and neck version and inclination angles. Agreement between angular measurements results of bones scanned in different positions on the CT table demonstrated that the technique is independent of femoral positioning.

Publisher

Frontiers Media SA

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3