Comprehensive analysis of the expression patterns and function of the FTO–LINE1 axis in yak tissues and muscle satellite cells

Author:

Ma Zongliang,Chai Zhixin,Yang Huan,Zhang Xiangfei,Zhao Hongwen,Luo Xiaolin,Zhong Jincheng,Wu Zhijuan

Abstract

BackgroundThe long interspersed nuclear element 1 (LINE1) retrotransposon has been identified as a specific substrate for fat mass and obesity-related gene (FTO), which facilitates the removal of N6-methyladenosine modifications from its targeted RNAs.MethodsThis study examined the dynamic interaction between FTO and LINE1 in yak tissues and muscle satellite cells, utilizing RT-qPCR, RNA immunoprecipitation (RIP), immunofluorescence staining, and techniques involving overexpression and interference of FTO and LINE1 to elucidate the relationship between FTO and LINE1 in yak tissues and muscle satellite cells.ResultsCloning and analysis of the FTO coding sequence in Jiulong yak revealed a conserved protein structure across various Bos breeds, with notable homology observed with domestic yak, domestic cattle, and Java bison. Comprehensive examination of FTO and LINE1 gene expression patterns in Jiulong yaks revealed consistent trends across tissues in both sexes. FTO mRNA levels were markedly elevated in the heart and kidney, while LINE1 RNA was predominantly expressed in the heart. Immunoprecipitation confirmed the direct interaction between the FTO protein and LINE1 RNA in yak tissues and muscle satellite cells. The FTOLINE1 axis was confirmed by a significant decrease in LINE1 RNA enrichment following its expression interference in yak muscle satellite cells. Overexpression of FTO substantially reduced the expression of recombinant myogenic factor 5 (MYF5). However, FTO interference had no discernible effect on MYF5 and myoblast determination protein 1 (MYOD1) mRNA levels. Immunofluorescence analysis revealed no alterations in Ki-67 protein expression following FTO interference or overexpression. However, phalloidin staining demonstrated enhancement in the myotube fusion rate of yak muscle satellite cells upon LINE1 interference.ConclusionThis comprehensive mapping of the FTO and LINE1 mRNA expression patterns establishes a direct interaction between the FTO protein and LINE1 RNA in yak. The findings suggest that FTO overexpression promotes muscle satellite cells differentiation, whereas LINE1 negatively regulates myotube fusion. The study provides fundamental insights into the role of the FTOLINE1 axis in determining the fate of muscle satellite cells in yak, laying a solid theoretical foundation for future investigations.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3