Long transportation duration affects nutrient composition, mycotoxins and microbial community in whole-plant corn silage

Author:

Zhang Caixia,Jiang Jun,Li Junfeng,Zhang Jiming,Zhang Xinyue,Wang Hairong

Abstract

IntroductionPotential nutrient losses and mycotoxin accumulation caused by abnormal fermentation during transportation from cropland to dairy farms leads to the diseases incidence and threatens the health of dairy cows, then further causes financial losses. The aim of this study was to investigate the effects of different transportation times on the nutritional composition, mycotoxins, and microbial communities in whole-plant corn silage (WPCS).MethodsThree groups were subjected to different transport times: DY, short (<200 min); ZY, medium time (300–500 min); and CY, long transport time (>600 min). WPCS were collected from the same field, and nutrient composition and microbial composition before and after transportation were analyzed.Results and discussionOur results showed that the temperature of WPCS was higher in the ZY and CY groups than in the DY group (P < 0.01). There were no significant differences in dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), ether extract (EE) and starch contents after different transportation times (P > 0.05), whereas the starch and water-soluble carbohydrates (WSC) contents in the CY group was significantly decreased after transport (P < 0.05). Similarly, the concentration of vomitoxin in the DY and CY groups declined markedly (P < 0.05) and the zearalenone content in the DY group also significantly decreased after transportation (P < 0.05). Regarding the analysis of microorganisms in WPCS, UniFrac-distance matrices and Shannon indices showed differences in the ZY group (P < 0.05), but fungal diversities were not influenced by the transport time (P > 0.05). In the ZY group, the relative abundance of Lactiplantibacillus decreased significantly after transportation (P > 0.05), but the relative abundances of unidentified_Chloroplast, Pantoea, Gluconobacter, unidentified Acetobacter and Acinetobacter increased markedly (P < 0.05). In addition, the relative abundances of Acetobacter and Gluconobacter in the CY group increased after transport (P < 0.05). Among fungal communities, a total of three, nine, and ten different fungal flora were observed in the DY, ZY, and CY groups, respectively, although no difference was found in fungal diversity. In conclusion, increased temperature, loss of starch, and mycotoxin variation were found with increased transport time. This might be the result of competition between bacteria and fungi, and novel technologies will need to be utilized for further exploration of the mechanism.

Publisher

Frontiers Media SA

Subject

General Veterinary

Reference49 articles.

1. Food and Agricultural Organization, Rome2016

2. XuDM Mechanism of Microbial and Metabolome on Fermentation of Corn Silage Effected Byclimate Zones and Inoculations2021

3. Silage review: Recent advances and future technologies for whole-plant and fractionated corn silage harvesting;Ferraretto;J Dairy Sci.,2018

4. Methane production, ruminal fermentation characteristics, nutrient digestibility, nitrogen excretion, and milk production of dairy cows fed conventional or brown midrib corn silage;Hassanat;J Dairy Sci.,2017

5. Journal of dairy science silage special issue: Introduction;Grant;J Dairy Sci.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3