Case report: Fluoroscopic-assisted closed reduction and minimally invasive femoral capital physeal fracture repair in four calves

Author:

Loyd Avery F.,Tatarniuk Dane M.,Naiman Jaron H.,Merkatoris Paul T.,Troy Jarrod R.

Abstract

ObjectiveTo describe a minimally invasive osteosynthesis (MIO) femoral capital physeal fracture (FCPF) repair technique using multiple smooth Steinmann pins in four calves.Study designCase series.AnimalFour calves (< 60 days of age).MethodsMedical records at a single referral hospital were searched for calves that had minimally invasive osteosynthesis (MIO) femoral capital physeal fracture (FCPF) repair performed using multiple Steinmann pins between 2020 and 2021. Calves receiving alternative repair, euthanasia without repair, or > 60 days of age were excluded. Medical records were reviewed together the following information: inciting FCPF cause, patient signalment, clinical sign duration pre-admission, history of dystocia, and any pre-admission treatment. Preoperative parameters collected included packed cell volume (PCV), serum total solids (TS), additional bloodwork when available, peripheral blood glucose, antimicrobial therapy, and analgesic medications. Preoperative coxofemoral radiographic images of all calves were obtained.Results/outcomeFour calves were presented with severe hind limb lameness from varying etiologies. FCPF was diagnosed in all calves via radiograph. All FCPFs were repaired with an MIO repair technique using multiple Steinmann pins. Intraoperative fracture reduction and fixation were deemed appropriate by the attending surgeon with the use of fluoroscopy. Postoperatively, all calves retained normal weight bearing and were ambulating. One calf died postoperatively due to an unrelated comorbidity (severe bronchopneumonia and hyperkalemia). The three remaining calves survived to hospital discharge and were ambulating normally with an adequate range of motion at the time of discharge. Long-term follow-up reports were available for two cases, which revealed long-term survival at 210- and 146-days. Owners reported good ambulation, and one of the calves was placed in the show ring and was performing. However, one calf was lost to long-term follow-up.ConclusionMIO FCPF repair with multiple Steinmann pins, previously described in small animal species, can be implemented for FCPF repair in young calves.Clinical impactThis case series provides a foundation for minimally invasive osteosynthesis technique translation to large animal juveniles and reports an alternative MIO technique for capital physeal closed fracture repair in calves.

Publisher

Frontiers Media SA

Subject

General Veterinary

Reference12 articles.

1. Slipped capital femoral epiphysis in calves;Hamilton;J Am Vet Med Assoc.,1978

2. Femoral capital physeal fractures in 25 foals;Hunt;Vet Surg.,1990

3. Treatment of slipped capital femoral epiphysis in cattle: 11 cases (1974-1988);Hull;J Am Vet Med Assoc.,1990

4. Repair of femoral capital physeal fractures in 12 cattle;Ivany Ewoldt;Vet Surg.,2003

5. Fixation of femoral capital physeal fractures with 70 mm cannulated screws in five bulls;Wilson;Vet Surg.,1991

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3