Leveraging SOLOv2 model to detect heat stress of poultry in complex environments

Author:

Yu Zhenwei,Liu Li,Jiao Hongchao,Chen Jingjing,Chen Zheqi,Song Zhanhua,Lin Hai,Tian Fuyang

Abstract

Heat stress is one of the most important environmental stressors facing poultry production. The presence of heat stress will reduce the antioxidant capacity and immunity of poultry, thereby seriously affecting the health and performance of poultry. The paper proposes an improved FPN-DenseNet-SOLO model for poultry heat stress state detection. The model uses Efficient Channel Attention (ECA) and DropBlock regularization to optimize the DenseNet-169 network to enhance the extraction of poultry heat stress features and suppress the extraction of invalid background features. The model takes the SOLOv2 model as the main frame, and uses the optimized DenseNet-169 as the backbone network to integrate the Feature Pyramid Network to detect and segment instances on the semantic branch and mask branch. In the validation phase, the performance of FPN-DenseNet-SOLO was tested with a test set consisting of 12,740 images of poultry heat stress and normal state, and it was compared with commonly used object detection models (Mask R CNN, Faster RCNN and SOLOv2 model). The results showed that when the DenseNet-169 network lacked the ECA module and the DropBlock regularization module, the original model recognition accuracy was 0.884; when the ECA module was introduced, the model's recognition accuracy improved to 0.919. Not only that, the recall, AP0.5, AP0.75 and mean average precision of the FPN-DenseNet-SOLO model on the test set were all higher than other networks. The recall is 0.954, which is 15, 8.8, and 4.2% higher than the recall of Mask R CNN, Faster R CNN and SOLOv2, respectively. Therefore, the study can achieve accurate segmentation of poultry under normal and heat stress conditions, and provide technical support for the precise breeding of poultry.

Publisher

Frontiers Media SA

Subject

General Veterinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3