Development of a TaqMan polymerase chain reaction detection method for the precise identification and quantification of an attenuated Eimeria maxima vaccine strain in poultry

Author:

Jin Haozhan,Cai Haiming,Liao Shenquan,Qi Nanshan,Li Juan,Lv Minna,Lin Xuhui,Hu Junjing,Song Yongle,Zhu Yibin,Chen Xiangjie,Yin Lijun,Zhang Xiaohui,Zhang Jianfei,Zhang Xu,Sun Mingfei

Abstract

Avian coccidiosis, a parasitic disease prevalent in poultry, is caused by Eimeria species and leads to significant economic losses. The use of attenuated live oocyst vaccines has been adopted as an alternative to the use of anticoccidial drugs. However, the accurate detection and differentiation of vaccine strains from virulent ones remain challenging. Therefore, this study presents a novel TaqMan polymerase chain reaction (PCR) detection method that offers enhanced sensitivity, specificity, and reproducibility compared with traditional PCR techniques. Through whole-genome resequencing and bioinformatics analysis, we identified a molecular marker gene, Em_marker6, with a unique 21-base pair deletion specific to the Eimeria maxima attenuated vaccine strain. Optimized primers and probes targeting this marker enabled rapid quantification cycle value achievement and high fluorescence intensity. The standard curve’s slope of −3.540 and correlation coefficient of 0.9971 confirmed precise quantification capabilities. The TaqMan PCR method detected as few as 30 plasmid DNA copies and 50 oocysts per reaction, outperforming traditional PCR techniques by an order of magnitude. No cross-reactivity was observed with other E. maxima wide-type strains or common intestinal pathogens, ensuring the exclusive detection of the E. maxima EMPY vaccine strain. Weekly testing over 3 weeks demonstrated minimal variability, indicating robust consistency in the method’s application. Testing on 61 clinical samples revealed a 57.38% positivity rate for E. maxima species and 13.11% for the vaccine strain. The Em_marker6 gene exhibited genetic stability across multiple generations, confirming the detection method’s robust stability for the attenuated E. maxima vaccine strain. This study significantly advances the field of avian coccidiosis research and control by providing a valuable tool for monitoring vaccine purity and preventing inadvertent infections in vaccinated flocks, aligning with global efforts to curb antibiotic use in animal feed.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3