Dietary Eugenol Nanoemulsion Potentiated Performance of Broiler Chickens: Orchestration of Digestive Enzymes, Intestinal Barrier Functions and Cytokines Related Gene Expression With a Consequence of Attenuating the Severity of E. coli O78 Infection

Author:

Ibrahim Doaa,Eldemery Fatma,Metwally Aya Sh.,Abd-Allah Ehab M.,Mohamed Dalia T.,Ismail Tamer Ahmed,Hamed Thoria A.,Al Sadik Gehan M.,Neamat-Allah Ahmed N. F.,Abd El-Hamid Marwa I.

Abstract

Recently, the use of essential oils (EOs) or their bioactive compounds encapsulated by nanoparticles as alternative supplements for in-feed antimicrobials is gaining attention, especially in organic poultry production. Focusing on eugenol, its incorporation into the nanoformulation is a novel strategy to improve its stability and bioavailability and thus augment its growth-boosting and antimicrobial activities. Therefore, we explored eugenol nanoemulsion activities in modulating growth, digestive and gut barrier functions, immunity, cecal microbiota, and broilers response to avian pathogenic E. coli challenge (APEC) O78. A total of 1,000 one-day-old broiler chicks were allocated into five groups; negative control (NC, fed basal diet), positive control (PC), and 100, 250, and 400 mg/kg eugenol nanoemulsion supplemented groups. All groups except NC were challenged with APEC O78 at 14 days of age. The results showed that birds fed eugenol nanoemulsion displayed higher BWG, FI, and survivability and most improved FCR over the whole rearing period. Birds fed 400 mg/kg of eugenol nanoemulsion sustained a higher growth rate (24% vs. PC) after infection. Likely, the expression of digestive enzymes' genes (AMY2A, CCK, CELA1, and PNLIP) was more prominently upregulated and unaffected by APEC O78 challenge in the group fed eugenol nanoemulsion at the level of 400 mg/kg. Enhanced gut barrier integrity was sustained post-challenge in the group supplemented with higher levels of eugenol nanoemulsion as evidenced by the overexpression of cathelicidins-2, β-defensin-1, MUC-2, JAM-2, occludin, CLDN-1, and FABP-2 genes. A distinct modulatory effect of dietary eugenol nanoemulsion was observed on cytokine genes (IL-1β, TNF-α, IL-6, IL-8, and IL-10) expression with a prominent reduction in the excessive inflammatory reactions post-challenge. Supplementing eugenol nanoemulsion increased the relative cecal abundance of Lactobacillus species and reduced Enterobacteriaceae and Bacteriods counts. Notably, a prominent reduction in APEC O78 loads with downregulation of papC, iroN, iutA, and iss virulence genes and detrimental modifications in E. coli morphological features were noticed in the 400 mg/kg eugenol nanoemulsion group at the 3rd-week post-challenge. Collectively, we recommend the use of eugenol nanoemulsion as a prospective targeted delivery approach for achieving maximum broilers growth and protection against APEC O78 infection.

Publisher

Frontiers Media SA

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3