Evaluation of immune responses to Brucella vaccines in mouse models: A systematic review

Author:

Darbandi Atieh,Alamdary Shabnam Zeighamy,Koupaei Maryam,Ghanavati Roya,Heidary Mohsen,Talebi Malihe

Abstract

IntroductionDespite the accessibility of several live attenuated vaccines for animals, currently, there is no licensed vaccine for brucellosis in human populations. Available and confirmed animal vaccines may be harmful and considered inappropriate for humans. Thus, human vaccines for brucellosis are required. We aimed to evaluate the effects of Brucella vaccines on mouse models and discuss the potential mechanisms of these vaccines for the design of the appropriate human vaccines.Materials and methodsA systematic search was carried out in Web of Science, Embase, and PubMed/Medline databases. The following MeSH terms were applied: brucellosis, vaccine, Brucella, and vaccination. The original manuscripts describing the Brucella vaccines on mouse models were included. The review articles, editorials, correspondences, case reports, case series, duplicate publications, and articles with insufficient data were excluded.ResultsOf the 163 full texts that were screened, 17 articles reached to inclusion criteria. Combining the results of these trials revealed a reduction in bacterial load and colonization rate of Brucella in the spleen, an increase in inflammatory markers, especially IFN-γ and IL-4, and the highest levels of antibody classes in vaccinated animals compared to animals challenged with various virulent strains of Brucella. The majority of studies found that different anti-Brucella vaccines induced a significant protective effect in animals challenged with Brucella strains. Additionally, mice were given the highest level of Brucella vaccine protection and significant clearance of Brucella strains when the immunization was delivered via the IP (intraperitoneal) or IP-IN (intranasal) routes.ConclusionBrucella is responsible for half-million new cases globally annually, and the lack of a proper human vaccine poses the risk of brucellosis. A variety of vaccines are used to prevent brucellosis. Subunit vaccines and recombinant human vaccines have higher safety and protective properties. Although vaccination helps brucellosis control, it does not eradicate the disease. Thus, we recommend the following strategies. (a) establishment of a registration system; (b) close monitoring of slaughterhouses, markets, and herds; (c) training veterinarians; (d) legal protection of the consequences of non-compliance with preventive measures.

Publisher

Frontiers Media SA

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3