Comparison of ruminal microbiota, metabolomics, and milk performance between Montbéliarde×Holstein and Holstein cattle

Author:

Chang Haomiao,Wang Xinling,Zeng Hanfang,Zhai Yunfei,Huang Ni,Wang Changjian,Han Zhaoyu

Abstract

Holstein cattle are well known for their high average milk yield but are more susceptible to disease and have lower fecundity than other breeds of cattle. The purpose of this study was to explore the relationship between ruminal metabolites and both milk performance and ruminal microbiota composition as a means of assessing the benefits of crossbreeding Montbéliarde and Holstein cattle. This experiment crossbred Holstein with Montbéliarde cattle, aimed to act as a reference for producing high-quality dairy products and improving the overall efficiency of dairy cattle breeding. Based on similar age, parity and lactation time, 46 cows were selected and divided into two groups (n  =  23 per group) for comparison experiment and fed the same formula: Montbéliarde×Holstein (MH, DIM  =  33.23  ±  5.61 d), Holstein (H, DIM  =  29.27  ±  4.23 d). Dairy herd improvement (DHI) data is an important basis for evaluating the genetic quality of bulls, understanding the quality level of milk, and improving feeding management. We collected the DHI data of these cows in the early lactation, middle lactation and late lactation period of 10  months. The results showed that the average milk production and protein content in Montbéliarde×Holstein were 1.76  kg (34.41  kg to 32.65  kg, p  >  0.05) and 0.1% (3.54 to 3.44%, p  <  0.05) higher than in Holstein cattle. Moreover, milk from Montbéliarde×Holstein cattle had lesser somatic cell score (1.66 to 2.02) than Holstein cattle (p  <  0.01). A total of 10 experimental cattle in early lactation were randomly selected in the two groups (Lactation time  =  92.70  ±  6.81), and ruminal fluid were collected by oral gastric tube. Using 16S rRNA microbial sequencing, we compared the ruminal microbiota composition and found that Montbéliarde×Holstein cattle had a lower abundance of Alphaproteobacteria (p  <  0.05) and higher abundance of Selenomonas than Holstein cattle (p  <  0.05). These bacteria play roles in protein degradation, nitrogen fixation and lactic acid degradation. The abundance of Succiniclasticum was also greater in Montbéliarde×Holstein cattle (p  =  0.053). Through ruminal metabolome analysis, we found that the levels of trans-ferulic acid, pyrrole-2-carboxylic acid, and quinaldic acid were significantly increased in Montbéliarde×Holstein cattle, while that of lathosterol was significantly decreased. The changes in the levels of these metabolites could confer improved antioxidant, anti-inflammatory, and antibacterial activities.

Publisher

Frontiers Media SA

Subject

General Veterinary

Reference51 articles.

1. Advances in heterosis research;Yuan;Life Sci Res,2016

2. Simulation study on crossbreeding and genetic evaluation in crossbred dairy cattle population;Wang;Acta Veterinaria et Zootechnica Sinica,2011

3. Invited review: crossbreeding in dairy cattle: a Danish perspective;Sorensen;J Dairy Sci,2008

4. Effect of German Simmental cattle on improving local Simmental crossbred cattle by hybridization;Wang;China Dairy Cattle,2014

5. Interbreed Matings in dairy cattle. I. Yield traits, feed efficiency, type and rate of milking 1;Mcdowell;J Dairy Sci,1968

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3