Calculation model of concrete-filled steel tube arch bridges based on the “arch effect”

Author:

Wang Shaorui,Li Yingbin,Liu Zengwu,Cheng Tianlei

Abstract

In view of the limitations of the current code based on the equivalent beam-column method with the “rod mode” instead of the “arch mode” for the calculation of concrete-filled steel tube arch bridges, this paper takes the real bearing mechanism of the arch as the starting point and analyzes the different bearing mechanisms of the arch and eccentric pressurized column. The concrete-filled steel tube arch model test was carried out to analyze the deformation state and damage mode, and the geometric non-linear bending moment of the measured arch was compared with the bending moment value calculated by the eccentricity increase coefficient of the “rod mode.” The results showed that the transfer of internal force is from the axial force to the arch axis, causing the vertical reaction force and horizontal thrust. However, the eccentric compression column only produced the vertical force at the bottom and combines with the lateral deformation indirectly generated by the eccentric distance. In addition, the deformation stage of the arch is basically the same as that of the eccentric compression column. The final failure mode of the arch is 4-hinge damage, and the final failure mode of the eccentric compression column is single-hinge damage. The preliminary geometric non-linear bending moment value obtained by the two modes accords well. Therefore, the main factors for the difference in the bearing mechanism between the two modes are different force structures, force transmission routes, and sources of deformation. Due to the difference in the bearing mechanism, the final failure mode is different, and the deformation ability of the arch is weakened by using the “rod mode” instead of the “arch mode.” The geometric non-linear bending moment of the control section calculated by the eccentricity increase coefficient is conservative, but the influence of the geometric non-linearity of other sections is not considered enough.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference25 articles.

1. Geometric nonlinearity and long-term behavior of crown-pinned CFST arches;Bradford;J. Struct. Eng.,2014

2. Equivalent beam and column method for simplified calculation of ultimate bearing capacity of concrete-filled steel tubular arch;Chen,2004

3. Dong yanzhao. Calculation method for increasing coefficient of arch rib eccentricity of long-span arch bridge;Guo;J. Jilin Univ. Eng. Technol. Ed.,2022

4. Analysis of geometric nonlinearity of special-shaped arch bridges;Huo;J. Highw. Transp. Res. Dev. Engl. Ed.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3