Study on particle cluster dynamics behavior in settling and the influence by fiber barrier

Author:

Bai Zhifeng,Li Mingzhong,Li Feng,Du Qiuying

Abstract

The dispersion of particle clusters is relevant to a high concentration carrying fluid such as fracturing and drilling fluid, and the fiber-containing fluid could improve the carrying performance of particles. In the present study, the settling dynamics behavior of clusters is investigated using the CFD-DEM method. The numerical simulation method employed was able to accurately predict the deformation and velocity change rules, which express the cluster settling dynamics behavior. The velocity variation of particles is affected by hindrance and contact inside the cluster, and the velocity contrast leads to particle leakage and cluster deformation. The cluster will have regular shape changes and break up in the settlement process under gravity and fluid drag force. According to the sensitivity parameter analysis, the deformation of clusters is mainly affected by the fluid rheological properties. Different from glycerol, the settling cluster in viscoelastic HPG has a more complex dynamic behavior and a better fiber barrier effect. The fiber barrier between particles in the cluster can be regarded as a weakly constrained fiber grid structure. Due to the contact force, fiber grid structure formed in the cluster could effectively restrain the shape change and break up trend in the settlement process. The design also considers the influence of fiber and HPG concentration, and we analyze the settling velocity of the mixed-fiber cluster. Overall, the research on the cluster settling dynamics behavior is helpful in analyzing the effect of fiber-containing fluid in the carrying performance of particles.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3