Improving the Sodium Storage Performance of Porous Carbon Derived From Covalent Organic Frameworks Through N, S Co-Doping

Author:

Zhang Xiaochen,Zhang Zijian,Zhang Xueqi,Sun Haiquan,Hu Quan,Wang Haibao

Abstract

Heteroatom doping, which has long been considered as one of the most efficient approaches to significantly enhance the sodium storage ability of carbonaceous anodes, has drawn increasing attention. Compared with single doping, dual doping can introduce more defects and accelerate ionic diffusion. In addition, the synergistic effect between the dual doped atoms can significantly improve the electrochemical performances. Besides, exploring novel precursors with excellent properties, which can induce porous structure and rapid pathways for electrons/ions in the resultant carbonaceous anode, is still full of challenges. Herein, nitrogen and sulfur–co-doped urchin-like porous carbon (NSC) was fabricated through a combined strategy including carbonization and subsequent sulfidation, using covalent organic frameworks (COFs) as precursors. Because of the dual doping–endowed rich defects, high electronic conductivity, and favorable capacitive behavior, the resultant NSC exhibited excellent sodium storage performances, delivering superior sodium storage capacity (483.5 mAh g−1 at 0.1 A g−1 after 100 cycles) and excellent cycling stability up to 1,000 cycles (231.6 mAh g−1 at 1.0 A g−1). Importantly, such remarkable electrochemical performances of the resultant carbonaceous anode may shed light on the efficient conversion of COFs to functional materials.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3