Early Strength Development of Soft Clay Stabilized by One-Part Ground Granulated Blast Furnace Slag and Fly Ash-Based Geopolymer

Author:

Zheng Xiyao,Wu Jun

Abstract

One-part or “just add water” geopolymer is a cementitious material, which is friendly to environment and users in applications. However, the mechanical behavior of the soft soil stabilized by one-part geopolymer is not well acknowledged. In this study, soft clay was stabilized with ground granulated blast furnace slag (GGBFS) and fly ash (FA)-based geopolymer, which is a mixture of solid aluminosilicate precursor (Al-Si raw materials: GGBFS and FA), solid alkali activator, and water. The objective was to adopt one-part geopolymer as an alternative soil binder to completely replace ordinary Portland cement (OPC) for stabilizing the soft clay and evaluate the effect of the factors (i.e., GBFS/FA ratio in Al-Si precursor, activator/Al-Si precursor ratio, and water/binder ratio) that influenced the early strength. Results showed that the increase of the FA content in the Al-Si precursor increased the unconfined compressive strength (UCS) values significantly through the geopolymerization process. The highest UCS values were achieved with 90% GGBFS to 10% FA in the precursor when the activator/precursor and water/binder ratio is 0.15 and 0.7, respectively. The UCS values of geopolymer-stabilized clay could reach 1.5 MPa at 14 days at ambient temperature, which is much higher than that of OPC-stabilized clay. The microstructure and mineralogy analyses indicated that the prolific hydration products, such as calcium silicate hydrate (C-S-H), calcium aluminum hydrate (C-A-H), and calcium aluminum silicate hydrate (C-A-S-H), contributed greatly to strengthen the soft clay by forming the soil skeleton and infilling among clay particles, while sodium aluminosilicate (N-A-S-H) gel is only served to fill the part of porosities in the soil and cannot effectively enhance the UCS of the one-part geopolymer-stabilized soft clay. This paper results suggested that one-part GGBFS-FA–based geopolymers have the potential to replace OPC in the manufacture of stabilized soft clay.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3