Nanotexturing TiO2 over carbon nanotubes for high-energy and high-power density pseudocapacitors in organic electrolytes

Author:

Poirot N.,Rajalingam V.,Murgu R. N.,Omnée R.,Raymundo-Piñero E.

Abstract

Titanium oxides have been considered potential electrode materials for pseudocapacitors because of their exceptional properties, such as high thermal and chemical stabilities, ready availability and low cost. However, they are not ideal for practical applications due to their poor ionic and electrical conductivity. The electrochemical performance of TiO2 can be greatly improved if the material is nanotextured by reducing the particle size in optimizing the synthesis pathway. Actually, for metallic oxides, the electrochemical performance significantly depends on the particle size/morphology. At relatively low current densities the higher capacity values are exhibited by noncrystalline TiO2 having 2 nm particle size, with values reaching 704 C g−1. However, only thin electrodes are able to operate at a high charge density, limiting the energy density of the final device. Here, we propose a solution to circumvent such a drawback by further nanotexturing TiO2 over multiwalled carbon nanotubes (CNTs). For that purpose, CNTs were introduced during oxide preparation. The synthesis protocol has been optimized for obtaining a uniform coverage of small TiO2 particles on the surface of the CNTs. At low current densities, high mass loading TiO2/CNT composites electrodes are able to deliver capacitances as high as 480 F g−1 and the presence of CNTs allows keeping 70% of the capacitance at high current densities while only 27% is retained when using a regular conductivity agent as carbon black. The results demonstrate that uniform nanotexturation of TiO2 over CNTs allows good rate capabilities to be obtained for thick electrodes having sufficient active material loading to achieve high specific energy and power densities.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3