Mechanical performance and carbonation resistance of basalt fiber—polypropylene fiber rubber concrete

Author:

Kun Liu,Xin Liu Hua,Bei Liu Bei,Nan Liu Ya

Abstract

The accumulation and incineration of waste tires have caused great damage to the environment. Therefore, recycling waste tires efficiently and economically has become an important issue in protecting world resources and the environment. In this study, 5%, 10%, and 15% rubber particles were used to replace fine sand in concrete, and basalt fibers (0.1%, 0.2%, and 0.3%) and polypropylene fibers (0.1%, 0.15%, and 0.2%) were added to rubber concrete to prepare hybrid fiber rubber concrete (HFRC). The experiments investigated the changes of mechanical properties of basalt (BF), polypropylene (PPF) fibers, and rubber particles when they were blended into concrete respectively, and the degree of influence of each factor on the mechanical and carbonation resistance of HFRC was investigated based on the orthogonal test. The results show that the rubber concrete’s mechanical and carbonation properties are improved to varying degrees after adding hybrid fibers. When the basalt fiber content is 0.2% and the polypropylene fiber content is 0.15%, the overall mechanical properties of HFRC reach the best state. When the basalt fiber content is 0.2%, the polypropylene fiber content is 0.15%, and the rubber content is 5%, the carbonation resistance of HFRC is the most ideal. In addition, the microstructure of HFRC was observed by scanning electron microscope.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference42 articles.

1. Flexural behavior of basalt fiber reinforced concrete beams with recycled concrete coarse aggregates;Alnahhal;Constr. Build. Mater.,2018

2. Concrete made with used tyre aggregate: Durability-related performance;Bravo;J. Clean. Prod.,2012

3. The current situation of the application of waste tires in road engineering at home and abroad;Cao;North. Environ.,2013

4. Characterization of the physical and mechanical properties of concrete with polypropylene fibers for solid mezzanine slabs of multi-family homes;Ccasani;Mater. Sci. Forum,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3