A Modular U-Net for Automated Segmentation of X-Ray Tomography Images in Composite Materials

Author:

Bertoldo João P. C.,Decencière Etienne,Ryckelynck David,Proudhon Henry

Abstract

X-Ray Computed Tomography (XCT) techniques have evolved to a point that high-resolution data can be acquired so fast that classic segmentation methods are prohibitively cumbersome, demanding automated data pipelines capable of dealing with non-trivial 3D images. Meanwhile, deep learning has demonstrated success in many image processing tasks, including materials science applications, showing a promising alternative for a human-free segmentation pipeline. However, the rapidly increasing number of available architectures can be a serious drag to the wide adoption of this type of models by the end user. In this paper a modular interpretation of U-Net (Modular U-Net) is proposed with a parametrized architecture that can be easily tuned to optimize it. As an example, the model is trained to segment 3D tomography images of a three-phased glass fiber-reinforced Polyamide 66. We compare 2D and 3D versions of our model, finding that the former is slightly better than the latter. We observe that human-comparable results can be achievied even with only 13 annotated slices and using a shallow U-Net yields better results than a deeper one. As a consequence, neural networks show indeed a promising venue to automate XCT data processing pipelines needing no human, adhoc intervention.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference37 articles.

1. Seeded Region Growing;Adams;IEEE Trans. Pattern Anal. Machine Intell.,1994

2. Deep Over-sampling Framework for Classifying Imbalanced Data;Ando,2017

3. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation;Badrinarayanan;IEEE Trans. Pattern Anal. Mach. Intell.,2017

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3