Assessment of chlorine resistance in concrete in the tidal range and splash zone of a torrid marine region

Author:

Yu Yongyan,Chen Nan,Li Lihui,Wang Jian

Abstract

Based on China’s long-term goals for 2035, numerous projects are expected to be constructed in torrid marine regions, with increased chloride ion erosion, particularly in tidal and splash zones. To improve chlorine resistance performance, in this work, we proposed a method to assess the chlorine resistance of concrete in the tidal range and splash zones of a torrid marine region. To ensure consistency in assessment, an enhanced Fuzzy analytic hierarchy process (F-AHP) method was applied. 1) The factors that affected the chloride resistance of concrete in the tidal range and splash zones in torrid marine regions were theoretically analyzed. 2) The factors were classified into concrete material properties, concrete structure location, and marine organism impact, which have been insufficiently mentioned in previous chlorine resistance assessments and other protective measures. The weight of factors was calculated in an enhanced F-AHP method to ensure the consistency of judgment matrices from expert investigations. Membership functions were obtained based on engineering requirements, standards, and specifications to enhance their applicability to engineering. 3) The assessment was then applied to the marine concrete engineering of the Xiapu Bridge in Hainan Province, China, with apparent characteristics of a torrid marine environment. The methods for improving the chlorine resistance of concrete were subsequently proposed.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Reference33 articles.

1. Mechanical and durability evaluation of metakaolin as cement replacement material in concrete;Al-Hashem;Materials,2022

2. Prediction of rapid chloride penetration resistance to assess the influence of affecting variables on metakaolin-based concrete using gene expression programming;Amin;Materials,2022

3. Probabilistic evaluation of the sustainability of maintenance strategies for RC structures exposed to chloride ingress;Bastidas-Arteaga;Int. J. Eng. Uncertain. Hazards Assess. Mitig.,2010

4. Durability of concrete bridge structure under marine environment;Cai;J. Coast. Res.,2019

5. On the assessment of the durability of the concrete bridges in service via the fuzzy EAHP;Chen;J. Saf. Environ.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3