Sol-gel synthesis of magnesium aluminate and synergistic degradation of Cr(VI) ion by adsorption and photocatalysis

Author:

Liu Miao,Wang Yi,Wu Yingjun,Liu Chunyang,Liu Xin

Abstract

Introduction: Magnesium aluminate (MgAl2O4) is a new adsorbent, which can be used to adsorb dyes and drugs, but it has not been used to adsorb Cr(VI) ions.Methods: A conventional polyacrylamide gel route with the different chelating agents including ethylenediamine tetraacetic acid (EDTA), oxalic acid and salicylic acid have been applied to synthesis the MgAl2O4 nanoparticles with the high adsorption capacity and photocatalytic reduction capacity for the adsorption and reduction of Cr(VI). The phase compositions, microstructure characteristics, optical properties, adsorption capacities and photocatalytic reduction capacities of MgAl2O4 nanoparticles can be effectively regulated by changing the type of chelating agent.Results and discussion: The pure phase MgAl2O4 nanoparticles were obtained by using EDTA and oxalic acid as chelating agents, but a small amount of MgO impurity appeared in the MgAl2O4 nanoparticles obtained by salicylic acid as chelating agents, which inhibited the adsorption and photocatalytic reduction ability of MgAl2O4 nanoparticles. The optimal MgAl2O4 content, Cr(VI) initial concentration and pH value were 0.75 mg/L, 100 mg/L and 5, respectively. The photocatalytic reduction capacity of MgAl2O4 nanoparticles obtained by oxalic acid as chelating agents was 3.56 times that of MgAl2O4 nanoparticles obtained by salicylic acid as chelating agents. The high adsorption capacity of MgAl2O4 nanoparticles is mainly due to electrostatic adsorption, while the high photocatalytic reduction capacity is mainly due to the high reduction capacity of active free radicals generated by the conduction electrons and valence band holes of MgAl2O4 nanoparticles.

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3